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Chapter 1

In tro duction

The upcoming of modern, powerful computers has enabled new possibilities for graphical
work. But naturally it has also entailed new problems. Great advanceshave been made in
creating graphical objects arti�cially . Surfacesof such computated objects are often �lled
with texture mapping. But a problem arises when the surface is larger than the available
texture. The textures can not, in general,simply be tiled, becauseboundarieswould become
visible. And what if the available texture contains undesiredparts? The generationof a new
texture, larger and only with desiredparts, would solve this problem.

Arti�cial generationsof this kind have to be done with texture synthesis. But there are
other application areasfor texture synthesis. It can not only be applied to create textures
without undesiredregions,but alsoto replacetheseparts directly within the given texture [17].
In the samedirection goesthe approach to correct transmission errors, e.g. causedby packet
basedtransmissionsof images.The lossof singlepackets could cause(without error protection
at network side) erroneousparts in the received image. These parts could be reconstructed
via texture synthesis [16]. Other approaches were made to use texture synthesis for digital
painting [12]. Also an application in image compressioncould be imagined. Textures within
the images would not have to be transmitted, but could be generated from a very small
texture sample.

But as many applications in graphical processing,texture synthesis also su�ers from its
high computational cost. Only with recent computers it is possible to solve problems of
texture synthesis, as it can be seenin the further work.

1.1 De�nitions

1.1.1 Texture

Although it was already talked about, until now no de�nition of the term texture was given.
There are di�eren t approaches to this de�nition. In somepublications the statement can be
found that there doesnot exist a clear de�nition of texture (e.g. [7], p. 414). But there has
to be a distinction from any surfacepattern.

A basicfeature of a texture is the periodic, aperiodic or random repetition of certain small,
elementary patterns. Thesepatterns, whosethe texture consist of, are called texels. Natural
textures consistnormally of random texel placements, whereasperiodic or deterministic texel
placements often can be found in arti�cial textures ([11], p. 394). With this knowledge, a
texture can be described only with thesetexels and rules for their repetition and placement.

1



2 CHAPTER 1. INTR ODUCTION

1.1.2 Texture Synthesis

Texture synthesis creates a new, generally not deterministic, texture from a given, �nite
texture sample. The following demandsare made on result and process(cp. [19], p. 6):

Visual Fidelit y. Visual �delit y describes the quality of the created texture. Therefore we
expect certain demandsto beful�lled. First of all from the output texture a similarity to
the given texture sampleis expected. The produced texture should have the samelook
as the input sample, it should contain the samestructure. Texelsshould be combined
in a comparableway. Further on it is expected from the produced texture not to look
arti�cial. Remarkable repetitions have to be avoided, structures should be continued
with natural transitions.

E�ectiv eness. The demandon the synthesis processis to be e�cien t in time and resources.
It should have a small computational e�ort and uselittle memory.

1.2 General Approac hes to Texture Synthesis

As already described in the de�nition of the term texture, it consist of a certain placement
of the basic texture elements. Texture synthesis has to synthesizethesetexels in appearance,
repetition and placement as true aspossibleto the original. For this primarily a �tting model
has to be found, which gives a clearer characterization of the texture. There are two main
categoriesof models, which can be found in the literature ([1], p. 108 et seqq.).

Statistical Mo dels. The statistical modelstry to characterizethe texture globally, whereby
statistical properties of the spatial distribution of gray levels are used as texture de-
scriptors. Thereby the description is only dependent on the statistical properties of
the points, without explicit usageof texture elements like texels or subregions. In this
category fall e.g. time series models ([1], p. 108) and Markov Random Field models
([1], p. 108 seqq.,[4], p. 45 seqq.).

Structural Mo dels. The structural models regard a texture as an arrangement of a set of
sub patterns, positioned with certain placement rules. This is continued recursively, so
that the sub pattern themselves are again made of sub pattern, positioned according
to certain placement rules. With this recursive approach the hierarchical structure of
natural scenesshould be captured. Although a very reasonableapproach, until today
very little e�ort has beendevoted to this approach.

With the help of one of these models �nally a new texture has to be synthesized. Great
advancesin synthesizing textures have been made with the statistical models. Above all,
very interesting papers have been published over the last years in the �eld of the Markov
Random Field models [5], [6], [13], [19], [20]. In the following work we follow this approach.

1.3 Problem Form ulation

As already mentioned, many di�eren t texture typeswith di�eren t characterization of the texel
placement can be found. Goal of this work was to adapt texture synthesis using the Markov
Random Field, i.e. pixel and patch based texture synthesis, to highly stochastic textures.
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Textures like this can be found in the nature, e.g. textures of stone, ground, water, wood,
etc.. Whenever necessaryfor comparisonto other approachesor for demonstration purpose,
the limitation to natural textures is broken. Demand on the resulting algorithm was a high
e�ectiv enessand a high visual �delit y. The algorithm should be implemented in C++.

In the last few yearsgreat advanceshave beenmade with patch basedtexture synthesis.
Our main attention lies thereforein this approach, becauseit producestextures of a high visual
quality with a comparative small computational e�ort. Neverthelessalso its predecessorpixel
basedtexture synthesis should be presented and the results compared.

1.4 Pro ceeding

In the following, primarily pixel based texture synthesis is presented (Chapter 2). Basing
on this, in Chapter 3 patch based texture synthesis is introduced. Its free parameters are
determined and the results are comparedto the pixel basedmethod. Propositions to enhance
visual quality and computational cost and its e�ect to the synthesizedtexture are made and
discussedin Chapter 4. Finally, Chapter 5 presents modi�ed applications of the enhanced
patch basedtexture synthesis algorithm.

1.5 Conventions

As far as not mentioned otherwise, the following conventions are made:

� All here used lengths are in pixels.

� All here presented imagesare in color, 24 bit/pixel. Synthesizedimageshave the same
color scaleas their input samples.

� All herepresented resultswereproducedwith our implementation of the hereintro duced
algorithms. Examplestaken from other sourcearemarked. The implementation is based
on an image processingsoftware, developed by the Universidad Polit �ecnicade Valencia
for Microsoft Windows computers.

� Measuredtimes were produced on a middle classdesktop computer with an Intel Pen-
tium 4, 1.70GHz CPU and 256MBytes RAM with Microsoft Windows XP Professional.

� All measuredtimes are only published exemplarily for demonstration purpose.



4 CHAPTER 1. INTR ODUCTION



Chapter 2

Pixel Based Texture Synthesis

In this chapter various pixel basedsynthesis algorithms are presented. Several papers have
been published since 1999, e.g. papers from Efros and Leung [6] and Wei and Levoy [20].
They both follow in generalthe sameapproach, but with di�eren t implementations. For that
we treat them asfar aspossiblecommonly. Whenever di�erences appear, theseare mentioned
explicitly . In the beginning the theoretical motivation of the algorithms is presented. It is
followed by an approach to the practical implementation, in whosecontext also open param-
eters are discussed.The chapter ends with a presentation of someresults. A more detailed
presentation of results is not in the aim of this paper, referenceis made to [6] and [20]. A
detailed discussionof the results in comparisonwith the patch basedalgorithms can be found
in Chapter 3.

2.1 Theoretical Approac h

In the pixel based synthesis the texture is modeled as a Markov Random Field (MRF),
assumingthat the brightnessvaluesof a pixel are highly correlated to the brightness values
of its spatial neighbors, but independent on the rest of the image [6]. The neighborhood is
modeledasa window around that pixel, with sizeand shapeof the window asfreeparameters.

In the following, let I bean imagethat is synthesized. Let I real be an in�nite texture, from
which pixels are sampled. Further let p 2 I bea pixel and w(p) � I bea neighborhood around
p. The approach consistsin estimating all sourcesof p in I real. This is doneby consideringthe
stochastic dependenciesin the MRF on the basisof comparing the pixel neighborhoods. From
the set of pixels, which contains all supposedsourcesof p in I real, the pixel p0 2 I real is �nally
sampledrandomly to I sample. The estimation is doneby calculating the conditional probabilit y
distribution function (pdf ) P(pjw(p)) in I real, which can be approximated by the histogram
of the set 
( p) = f p0 2 I real jd(w0(p0); w(p)) = 0g, where w0(p0) � I real is the neighborhood of
p0 in I real and d(w1; w2) is an appropriate distance betweentwo neighborhoods w1; w2.

In the real case, only a �nite texture sample I sample � I real is available. I real there-
fore has to be substituted by I sample. In this caseit is possible, that no appropriate neigh-
borhood can be found (
( p) = fg ), becauseno distance d = 0 exists. For this reason,
in the following it is not sampled from the pdf any longer, but from its approximation

 0(p) = f p0 2 I samplejd(w0(p0); w(p)) < dmaxg, where w0(p0) � I sample is the neighborhood
of p0 in I sample, and dmax is an appropriate distance tolerance (Figure 2.1).

5
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Figure 2.1: Overview pixel search process.Given a texture input sample (a) and an output
image (b), in which one pixel (x) is synthesized. From all neighborhoods, which match the
criterion 
 0 (painted in the input sample), one is randomly selected(red), and the pixel x
copied in the output image.

2.2 Free Parameters

In the theoretical approach from Section 2.1, someparameters remain undetermined. In the
following theseparametersare determined.

2.2.1 Neigh borho od w(p) and Pro cessing

Sizeand shape of the neighborhood w(p) are the main parameters,that determine the quality
of the synthesizedtexture. The sizeshouldbeon the scaleof the largest regular structure, that
should be synthesized,to catch su�cien tly the stochastic constraints of the texture. Its shape
is strongly related with the processingof the synthesis process,becauseit is recommendedto
use only already known pixels as neighborhood (causality). In the following, we summarize
choice for sizeand shape made in [6] and [20].

Efros et al. [6] initialize the output texture with a 3 � 3 patch (seed), randomly taken
from the input sample. Processingis done in layers outward from the already synthesized
pixels and/or from the seed. The neighborhood is modeled as a squarewindow. To match
the causality criterion, only already processedpixels within this window are consideredfor
the distance calculation (Figure 2.2).

Another approach is usedby Wei et al. [20]. First, the output image is totally initialized
with white noise. Then the output image is processedin raster scan order (from top to
bottom, left to right). For the processinga L-shaped neighborhood is used,which ensuresin
generalcausality, apart from the edgeregions. Becauseof the initialization with white noise,
the neighborhood contains in the beginning noise,which a�ects the randomnessof the output
texture. Edgesare handled in the following manner. In I sample only those neighborhoods w0

are considered,which are completely inside I sample. To guarantee causality and tileabilit y of
the output image I , it is regardedtoroidally. As soon as the neighborhood w(p) exceedsI , it
is expandedtoroidally (Figure 2.3).
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pwe

we

(a) (b) (c)

Figure 2.2: Pixel basedsynthesis according to Efros et al. [6]. (a) Pixel p with neighborhood
w(p) of size we � we (in this example we = 5), formed as square window. (b) The output
image I is initialized with a seedof 3 � 3 pixels. Afterwards the synthesis is started. (c)
The output texture is grown in layers from the seed. Only the yellow marked regionsof the
neighborhood are usedfor the distance calculation.

he p

we

(a) (b)

(c)

Figure 2.3: Pixel basedsynthesis according to Wei et al. [20]. (a) Pixel p with Neighborhood
w(p), we = 5; he = 3. (b) Synthesizing a middle pixel. (c) Start of synthesis process. To
guarantee causality and tileabilit y, the completely with noise initialized image I is expanded
toroidally. Only the noise in the last two rows and columns is used, all other pixels are
overwritten in the following synthesis processbefore they are used. For clarity, unusednoise
pixels are painted black.
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2.2.2 Distance d and Distance Tolerance dmax

To obtain useful results, a reasonabledistance d and a distance tolerance dmax have to be
found. In [6] a normalized L 2 norm is usedto measurethe di�erence:

d0 = A � 1
AX

k=1

(w0
k � wk )2; w0

k 2 w0; wk 2 w;

where A is the number of processedpixels and w0 and w are two, in sizeand shape identical,
neighborhoods. Normalization is done to compensatethe di�eren t numbersof pixels usedfor
the distance calculation during the synthesis of the whole texture. Further on, to give the
pixels near p a higher weight than the outer pixels, d is set to d = d0 � G, where G is a two-
dimensional Gaussiankernel. The selection is done with a variation of the nearestneighbor
technique:

dmax = (1 + � )d(w(p); wbest);

where wbest = argminw0d(w0; w(p)) ; w0 � I sample. In [6], � is set to � = 0:1. We obtain a
resulting


 0(p) = f p0 2 I samplejd(w0(p0); w(p)) < (1 + � )d(w(p); wbest)g

from which it is sampledrandomly.
Wei et al. usethe L 2 norm for distance calculation, but without any convolution. After-

wards the neighborhood w0 with the smallest distance d is selected. The distance tolerance
dmax = argminw0d(w0; w(p)) ; w0 � I sample.


 0(p) = f p0 2 I samplejd(w0(p); w(p)) = argminw0d(w0; w(p))g:

2.3 Computational E�orts

Pixel basedsynthesishasa high computational cost, which consistmainly of the high number
of gray value di�erences of the singlepixels, that hasto be calculated. Let wsample and hsample

be the width and the height of the input sample. According to [20] a L-shaped neighborhood
is assumed.To synthesizeone pixel, wsample � hsample search stepsare needed.Further on for
each search step (he � 1)we + d(we=2)e pixel comparisons(di�erence operations) have to be
made. Consequently the total computational cost consistsof

nop = wsample � hsample((he � 1)we + d(we=2)e)

di�erence operations for the synthesisof onepixel. The computational costof Efros' algorithm
is in the sameorder of magnitude. Figure 2.4 shows that the number of operations increases
exponentially with the sizeof the input sample.

2.4 Results

We implemented Wei's algorithm. The algorithm producesgood results, as already Wei et
al. show in [20]. But despite of that it is too slow. To create an output image of 200� 200
from an input sample of 128� 128 (with 256 gray levels), more than 2100 s (more than 35
minutes) are neededby our implementation with a neighborhood of height he = 3 and width
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Figure 2.4: Number of operations/pixel depending on the sizeof the input sample(we = 25,
he = 13). A quadratic input sample is assumed.

we = 7, and more than 2700s (more than 45 minutes) with a neighborhood of height he = 3
and width we = 9. But one has to remember that with neighborhoods of these sizes,only
small stochastic constraints can be captured. To reproduce bigger texels su�cien tly, larger
neighborhoods are needed,which increasethe computational cost enormously.
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(a) (b) (c)

Figure 2.5: Pixel basedsynthesis. Results. (a) Input sample(128� 128), gray scale8 bit/pixel
(b) Synthesizedimage, we = 7, he = 3. (c) Synthesizedimage, we = 9, he = 3.



Chapter 3

Patch Based Texture Synthesis

Pixel basedtexture synthesis has lead to good results. But despite of that it is still too slow.
One thing, that can be seenwith pixel basedsynthesis, is that neighbored pixels are normally
highly correlated. Imagine a circle on a plane: Oncea part of the circle hasbeensynthesized,
all other pixels are determined [5]. As conclusionof the upper assumption can be drawn, not
to synthesizesinglepixels, but larger texture parts at once. In this chapter various approaches
to this are presented. First, the algorithm is motivated theoretically. Second,the practical
implementation is approached and free parameters are discussed. Finally, we end with a
presentation of the results in comparison to the pixel basedmethod (computational e�orts,
visual �delit y). The various approaches are treated as far as possiblecommonly. Whenever
di�erences appear, theseare mentioned explicitly .

3.1 Theoretical Approac h

Various similar papers have been published, which deal with the approach, not to sample
single pixels, but patches from an input sample [5],[13]. In the beginning the approach of
pixel based synthesis (Chapter 2) is followed. Again the texture is modeled as a MRF,
the brightness value of a pixel being highly correlated to the brightness valuesof its spatial
neighbors.

Let I be an image that is synthesizedfrom an in�nite texture I real. Let further be R � I
be a square patch of pixels with the neighborhood (seam) � R(R) � I modeled around R.
Finally we de�ne a block B = (R [ � R(R)) � I as the combination of patch and seam
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Figure 3.1: Patch basedsampling. Block B consistingof patch R with surrounding neighbor-
hood � R(R).
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Figure 3.2: Overview patch search process. Given a texture input sample (a) and an out-
put image (b), in which one patch R is synthesized. From all neighborhoods � R0, which
match the criterion 
 0 (painted in the input sample), one is randomly selected(red), and the
corresponding patch is copied to the output image.

(Figure 3.1). The approach consists- like in the pixel basedtexture synthesis from Chapter
2 - in estimating a set containing all sourcesof a certain patch R in I real. This estimation
is done in consideration of the stochastic dependenciesin the MRF by a comparison of the
neighborhoods. From the set of patches,which contains all supposedsourcesof R in I real, the
patch R0 � I sample is �nally sampledrandomly to I . Like in Section2.1, the estimation is done
by calculating the conditional pdf P(Rj� R(R)) in I real. This can be empirically approximated
by the histogram of the set 
( R) = f R0 � I real jd(� R0(R0); � R(R)) = 0g, where � R0(R0) � I real

is the neighborhood of R0 in I real and d(� R1; � R2) is an appropriate distance between two
neighborhoods � R1 and � R2.

In real case,onceagain an image with �nite texture I sample � I real is introduced, and so
I real is substituted by I sample. Consequentially , 
 has to be adapted to an 
 0(R) = f R0 �
I samplejd(� R0(R0); � R(R)) < dmaxg, where � R0(R0) � I sample is the neighborhood of R0 in
I sample and dmax is an appropriate distance tolerance.

3.2 Further Approac h to the Algorithm

3.2.1 Edge Handling

Only patchesare consideredfor sampling, whoseblocks B 0 � I sample are completely in I sample.
Further on patches are copied with the neighborhood as whole blocks to the output image
I (seeSection 3.2.3). For all blocks B 0, which are sampled directly to the boundary of the
output imageI , the patchesR0are placedexactly at the boundary of I , with no neighborhood
� R0(R0) betweenR0 and and the boundary of I (Figure 3.3). If a block B 0 exceedsthe output
image boundaries, only the pixels within the boundaries would be processedfor distance
calculation.
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Figure 3.3: Arrangement of blocks in the output image. The blocks are copied with their
neighborhood in a manner that these seamsoverlap. Note that for blocks at the image
boundary no seamis copied. Only the yellow marked part of the neighborhood � R is used
for distance calculation.

3.2.2 Pro cessing and Causalit y Criterion

The output image is initialized with a randomly copiedblock from I sample, which is placed in
the upper left corner of the output image. The remaining blocks are sampled in raster scan
order, i.e. from top to bottom and from left to right.

To match the causality criterion, not the whole neighborhood � R(R) is usedfor distance
calculation, but only the upper and left part of this neighborhood. If R touches an image
boundary, the according part of the neighborhood is neglectedbecauseof above mentioned
edgehandling (Section 3.2.1, Figure 3.3).

3.2.3 Arrangemen t of Blo cks

It could be suggested,just to copy the selectedpatch R0 to the output image. As it can be
seenin Figure 3.4 (b), block boundariescan easily be seen,and this method doesnot satisfy
a high visual �delit y. In [5] and [13] two ways to solve this problem are proposed. Both
e�orts usethe seamto advancethe results. The blocks B 0 are copied to the output image in
a manner, that the seamsoverlap. (Figure 3.3)

In [5] the overlapping processis done by calculating the minimum cost path in the seams
between the newly chosenblock and the already sampled blocks. Finally the new block is
pasted along this path. We do not follow this approach. Instead, to reduce computational
e�orts, another approach is followed. In [13], p. 7, a simple blending (feathering, [18], p.
252) betweenthe two seamsis proposed. It weightens the pixels in each block proportionally
to their distance to the edgeof B 0 (Figure 3.5). A disadvantage of this solution is, that the
algorithm smoothes the texture along the boundaries,which could have a negative e�ect to
the sharpnessof the texture.
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(a) (b) (c)

Figure 3.4: Block arrangement with and without blending. (a) Input texture [2]. (b) Patch
basedsynthesiswithout blending. Block boundariescan easilybe recognized.(c) Patch based
synthesis with blending.
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Figure 3.5: Feathering of the blocks B 1 (with seamS1, left) and block B2 (with seamS2,
right). The image in the seamregion Sresult results from a blending of the brightness levels
of S1 and S2, linear dependent on the distance from the block edges. Sresult (x) = (1 �
w(x))S1(x) + w(x)S2(x).
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(a) (b) (c)

(d) (e)

Figure 3.6: Comparisonof di�eren t patch sizeswb. (a) Input texture [3], gray scale8 bit/pixel.
Sizeof the characteristic bricks about 20� 40 (width � height). (b) Synthesizedimage,wb = 5,
we = 4: In general the texture structure is not reproduced correctly. (c) Synthesizedimage,
wb = 25, we = 4: Horizontal structure is recognizable. (d) Synthesized image, wb = 45,
we = 4: Horizontal and vertical structures are reproduced. (e) Synthesizedimage, wb = 100,
we = 4: Structures are reproduced,but only little interaction betweenthesestructures is left
over to the algorithm.

3.3 Free Parameters

3.3.1 Patch Size wb

The patch size is the most critical parameter of this algorithm, and can be compared to the
neighborhood in the pixel basedmethod. The patch has to capture the statistical constraints
of the input texture and transfer them to the output image, which has in the pixel based
synthesis the neighborhood to do. A smaller wb meansmore randomnessin the output image
and vice versa. The patch sizeshould be big enoughto capture the biggest regular structure
in the texture. But it should not be too big, so that interaction between thesestructures is
left over to the algorithm ([5], Figure 3.6).

3.3.2 Seam Size we

The seamsizeshould bebig enoughto capture statistical constraints acrosspatch boundaries:
A large we catches strong statistical constraints, which forcesa natural transition of texture
featuresacrossboundaries. In our tests the width of the seamis largely independent on other
parameters,and - depending on the texture - good results can be reached with a very small
seam(e.g. for very smooth textures). A large e�ect to the visual �delit y of the output image
has also the blending, which must not be neglected. Good results have been obtained with
seamsof widths we � 5. It is important not to make the seamtoo big, to avoid introduced
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errors and a loss of sharpnessbecauseof the blending, and to reducecomputational e�orts.
(Figure 3.7)

3.3.3 Distance d

For distance calculation we use

d(� R0; � R) = [A � 1
AX

k=1

(� R0
k � � Rk )2]1=2; � R0

k 2 � R0; � Rk 2 � R;

whereA is the number of processedpixels and � R and � R0 are two, in sizeand shape identical,
neighborhoods.

For color images the distance is calculated for each RGB component separately. The
resulting distance d is calculated by the quadratic mean of the RGB distances.

d =

r
1
3

(d2
R + d2

G + d2
B )

3.3.4 Distance Tolerance dmax

In [13], p. 9 the distancetoleranceis dependent on a quality parameter � and the neighborhood
� R(R) of the actually to be synthesizedpatch R:

dmax = dmax; � = [A � 1
AX

k=1

(�� Rk )2]1=2;

where A is the number of processedpixels and � Rk 2 � R(R) are the brightnessvaluesof the
pixels in the neighborhood of R. If none of the processedblock neighborhoods matches this
distance tolerance, the block with the minimum distance is selected. A value of � = 0:2 is
proposedin [13], p. 9.

In contrast to that, we just set the distance tolerance dependent on the n best blocks:

dmax = dmax; n = d(� R0
n+1 ; � R(R)) ;

where � R0
n+1 is the (n+1)-th best matching neighborhood (neighborhood with the (n+1)-th

smallest di�erence d(� R0; � R(R)) ; � R0 � I sample) to the to be sampledpatch R � I . So


 0(R) = f R0 � I samplejd(� R0(R0); � R(R)) < d(� R0
n+1 ; � R(R))g;

where � R0(R0) � I sample is the neighborhood of R0 in I sample. This choice has the advantage
to determine directly the randomnessof synthesisprocessby the parameter n. The quality is
ensuredbecauseof the selectionof the n best blocks. Good results have beenobtained with
n � 5. With this choice of a distance tolerance, a with the factor A � 1 normalized distance
d is not necessary. Despite of that we leave it to enable an easy comparison with Liang's
distance tolerance dmax; � .
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(a) (b)

(c) (d)

(e) (f )

Figure 3.7: Comparison of di�eren t seamsizeswe. (a) Input texture [14]. Patch size wb =
25. (b) Synthesized image, we = 1. Problems with the feature matching can be seen. (c)
Synthesized image, we = 3. Smoother transitions can be observed. (d) Synthesized image,
we = 5. Best result. Good feature matching, smooth transitions. (d) Synthesized image,
we = 10. Smooth transitions, good feature matching, but �rst errors introduced by blending.
(e) Synthesizedimage, we = 20. Strong errors introduced by blending.
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Figure 3.8: Number of di�erence operations/pixel depending in the sizeof I sample (assuming
a quadratic I sample). Patch basedsynthesis: wb = 25, we = 5. Pixel basedsynthesis: we = 25,
he = 13.

3.4 Computational E�orts

Patch basedsynthesis has in comparison to the pixel basedsynthesis processin common a
reducedcomputational e�ort. Causeof the reduction is the sampling of whole blocks instead
of singlepixels. Let wsample and hsample be the width and the height of the input sample. The
number of search stepsfor the synthesisof oneblock is (wsample � wb � 2we + 1)(hsample � wb �
2we + 1). For each search steps2we(wb + 2we) pixels in the neighborhood are processed(note
the overlap in the upper left corner), and for each a di�erence of gray values is calculated.
The resulting e�ort has to be be divided by the number of pixels in a block, to obtain the
valuesfor one pixel. The resulting number of di�erence operations for one pixel is

nop �
(wsample � wb � 2we + 1)(hsample � wb � 2we + 1) � 2we(wb + 2we)

(wb + 2we)(wb + 2we)
:

Pleasenote that in this approximation a preciseedgehandling has beenneglected.
Both algorithms, pixel and patch basedapproaches,show a parallel exponential increasing

number of di�erence operations depending on the sizeof the input sample(Figure 3.8). But
a clear enhancement in e�ectivit y can be seenusing the patch basedtexture synthesis.

3.5 Results

As the Figures 3.9, 3.10 and 3.11 show, patch basedsampling producesbetter results with
lesstemporal e�orts than pixel basedsampling. Sampling of whole blocks conserveswell the
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(a) (b) (c)

Figure 3.9: Patch basedsynthesis. Results (1). Size of the input texture 128� 128, size of
the synthesizedimages200� 200. In brackets time in secondsfor synthesisprocess.(a) Input
image, gray scale8 bit/pixel (b) Synthesized image, pixel basedsynthesis, we = 9, he = 3
(2780 s). (c) Synthesizedimage, wb = 25, we = 5 (10 s).

character of the texture and leads to naturally looking output textures. Main advantage in
respect to pixel basedsampling is the capture of bigger stochastic constraints by patch and
seamthan in pixel basedsampling with comparable computational cost. Until today pixel
basedsamplingsu�ers from the constricted neighborhood becauseof a too high computational
e�ort. This can easily be seen in (Figures 3.10 (b), (e), (h)). Bigger, strongly from the
background varying structures are not reproduced. These structures are better reproduced
by the patch basedsynthesis, becauseof the copying of whole blocks to the output image.
This approach captures automatically the structures of the foreground. In common no block
boundariesare visible becauseof the blending, which though has a low computational cost.

Figure 3.12 shows exemplarily a map of distance valuesduring the block search process.
The next synthesizedblock B is chosenfrom the blocks with the n lowest values. It can be
seenthat for the highly stochastic texture (a) exist only few local minimums, with a slowly
increasing environment. In contrast to that many, periodic local minimums can be seenin
the highly deterministic texture (d), with rapidly increasing environment. Also clearly the
structure of the texture (texels) can be recognizedin (f ).

However various disadvantages of the block based method can be seen. It can not be
avoided, that sometimesblock boundaries becomevisible. Causeof this is normally a bad
continuation of existing structures (Figure 3.10 (i), 3.11 (f )). Another problem is that patch
based synthesis tends - other than pixel based synthesis - to visible repetitions of certain
blocks (and neighbors) in the output image(Figure 3.9 (c) at the boundary to the dark part).
This problem dependson the noticeability of the repeated block. So disturbs the repetition
of very smooth blocks lessthan the repetition of very eye-catching structures. The problem
gets worse when synthesizing large images from very small input samples. Neverthelessa
higher stochastic variabilit y would be desirable. Further on as in Section 3.4 can be seen,
the computational e�orts are still too high, especially when synthesizing from bigger input
samples. So the synthesis of an image of the size 200� 200 (wb = 25, we = 5) from a color
input image I sample of the size200� 200 needsmore than 93 s (128 s from 300� 300, 440 s
from 400� 400, 716 s from 500� 500 etc.). The e�ort in time is far away from real time
synthesis.

As �nal result can be drawn that patch basedsynthesis produces- especially for highly
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(a) (b) (c)

(d) (e) (f )

(g) (h) (i)

Figure 3.10: Patch basedsynthesis. Results (2). Sizeof the input textures 192� 192, sizeof
the synthesized images200� 200. In brackets time in seconds. Image (h) was downloaded
from Wei's Web page [21]. (a) Input image, gray scale8 bit/pixel. (b) Synthesized image,
pixel basedsynthesis, we = 9, he = 3 (6447 s). (c) Synthesizedimage, patch basedsynthesis,
wb = 25, we = 5 (32 s). (d) Input image, gray scale 8 bit/pixel. (e) Synthesized image,
pixel basedsynthesis, we = 9, he = 3 (6488 s). (f ) Synthesizedimage, patch basedsynthesis,
wb = 25, we = 5 (33 s). (g) Input image [14]. (h) Synthesized image, pixel basedsynthesis
[21]. (i) Synthesizedimage, patch basedsynthesis, wb = 40, we = 5 (64 s).



3.5. RESULTS 21

(a) (b) (c)

(d) (e) (f )

(g) (h) (i)

Figure 3.11: Patch basedsynthesis. Results (3). Sizeof the input images192� 192,sizeof the
synthesizedtextures 200� 200. In brackets time in secondsfor synthesisprocess.Images(b),
(e), (h) were downloaded from Wei's Web page [21]. (a) Input image [14]. (b) Synthesized
image, pixel based synthesis [21]. (c) Synthesized image, patch based synthesis, wb = 20,
we = 5 (88 s). (d) Input image [14]. (e) Synthesized image, pixel basedsynthesis [21]. (f )
Synthesized image, patch basedsynthesis, wb = 25, we = 5 (83 s). (g) Input image [14]. (h)
Synthesized image, pixel basedsynthesis [21]. (i) Synthesized image, patch basedsynthesis,
wb = 35, we = 5 (57 s).
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Figure 3.12: Distance values of the search for the next block, which is synthesized in (b)
resp. (e) from (a) resp. (d). Boundary zones,in which no valid blocks can be found (Section
3.2.1) are not displayed in (c) and (f ). (a) Input texture (150� 150), gray scale8 bit/pixel.
(b) Synthesized image (200� 200), in progress. (c) Distance valuesof all valid blocks (wb =
25; we = 5) of the input texture (a). (d) Input texture [3] (150� 150), gray scale8 bit/pixel.
(e) Synthesized image (200� 200), in progress. (f ) Distance valuesof all valid blocks (wb =
25; we = 5) of the input texture (d).
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stochastic, natural textures with biggerstructures inside(Figures 3.9(a), (d), (g)) subjectively
better results in lesstime. But there still are points to advancethe algorithm.
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Chapter 4

Impro vements

Despite of an improvement of the visual �delit y and computational cost in comparison to
pixel basedmethods, still remain possibilities to advancethe results. In the following chapter
�rstly possibilities to maximize the visual �delit y, and secondlya possibility to minimize the
computational cost for the synthesis of highly stochastic textures are introduced.

4.1 Application of Isometries

One of the critics in Section 3.5 was the moderate variabilit y in the output image, which
could be improved. Neverthelesswe hold on the block basedsampling, without making the
number n of selectedblocks too big, which could introduce errors causedby a bad matching
of the synthesizedblocks to the image. We extend the variabilit y by increasinge�ectiv ely the
number of available blocks in I sample, without making I sample larger.

In former approaches,blocks aresampledwithout modi�cations from the input image. But
imagine an arc in the sourceimage, running from the top to the right edge. The algorithm
starts at a certain position at the left boundary of the output texture with the most horizontal
part of this arc. A continuation to the top is impossible,becauseof the processingin raster
scanorder. A horizontal continuation to the right would signify a steady usageof the same
part of the arc, and causevisual in�delit y, becauseof visible repetitions (Figure 4.1 (b)).
Desirablein terms of an increasedstochastic variabilit y would be insteadanother continuation
of the arc, either an arc to the down, or another characteristic. This is possible by an
application of transformations either to the input sample I sample or to single blocks B �
I sample. Last but not least exactly thesemodi�cations of sampled texture blocks are needed
for the synthesis of segmented textures (Section 5.3).

4.1.1 Approac h

In the following various transformations of single square blocks B are introduced. We call
these transformations with referenceto [9], p. 20, isometries. Let B be a block of N � N
pixels, and B i;j 2 B be a single pixel of this block, with i; j 2 f 0; 1; : : : ; N � 1g. So the
following isometriesare de�ned:

0. Identit y:
I 0(B i;j ) = B i;j :

25
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1. Orthogonal re
ection about mid-vertical axis (j = (N � 1)=2) of block:

I 1(B i;j ) = B i;N � 1� j :

2. Orthogonal re
ection about mid-horizontal axis (i = (N � 1)=2) of block:

I 2(B i;j ) = BN � 1� i;j :

3. Orthogonal re
ection about �rst diagonal (i = j ) of block:

I 3(B i;j ) = B j;i :

4. Orthogonal re
ection about seconddiagonal (i = N � 1 � j ) of block:

I 4(B i;j ) = BN � 1� j;N � 1� i :

5. Rotation around center of block, through +90 � :

I 5(B i;j ) = B j;N � 1� i :

6. Rotation around center of block, through +180 � :

I 6(B i;j ) = BN � 1� i;N � 1� j:

7. Rotation around center of block, through -90� :

I 7(B i;j ) = BN � 1� i;j :

Now the above introduced isometriesare applied to all blocks B � I sample. The transformed
blocks B are consideredfor patch basedsampling.

The application is done by splitting the isometries into three categories,which can be
applied alone or together to all blocks B :

Category 0 Contains the isometry 0 (equivalent to processingin Chapter 3).

Category 1 Contains the isometries 0, 1, 2, 6. Only transformations, which change the
block character approximately about 180� are applied.

Category 2 Contains the isometries 0, 3, 4, 5, 7. Also transformations, which change the
block character approximately about 90� and re
ections about diagonalsare applied.

This split is done with respect to the increasingcomputational e�ort and to the application
area. The increasingof the computational costconsistsnot only in calculating a higher number
of distance values,becauseof e�ectiv ely more available blocks, but also in application of the
isometriesto the blocks. Further on, a category with no additional isometries,and categories
with isometries,which changethe block character through (approximately) 180� (e.g. to mirror
a semi-circle) and 90� (e.g. to rotate a quarter-circle) are regardedas reasonable.
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(a) (b) (c)

(d) (e)

Figure 4.1: Patch based synthesis with application of isometries. Parameters: wb = 25,
we = 5, n = 2. The synthesized pictures (300 � 150) were created with the input image
(150� 150) as initialization (left), which is continued with patch basedsampling to the right.
In brackets time in seconds.(a) Input image, gray scale8 bit/pixel. (b) Synthesized image,
application of isometriesof the category 0 (previous processing)(9 s). (c) Synthesizedimage,
application of isometries of the category 1 (23 s). (d) Synthesized image, application of
isometries of the category 2 (30 s). (e) Synthesized image, application of isometries of the
categories1 and 2 (45 s).

4.1.2 Results

The introduction of isometries leads to an improved stochastic variabilit y of the sampled
blocks. With additional isometriesan e�ectiv ely larger number of blocks is available for the
synthesis process,becauseof block transformations, without damaging the visual quality of
the blocks. In general, smaller distance values d can be obtained for many blocks B by the
additional application of isometries(Figure 4.2). For this reasonother blocks could match the
distancetolerancedmax and taken into account for sampling. This enablesa higher variabilit y
of the blocks sampledto I , and therewith a lessdeterministic continuation of already sampled
blocks is possible.

As can be seenin the Figures 4.1 and 4.3, an application of additional isometries to the
blocks can optimize the visual �delit y of the output image- whenever an improved stochastic
variabilit y is desired. In Figure 4.3 (a) - (d) can be seen, how di�eren t the synthesized
results can be, in regard to the handling of the dark zone. Without additional isometries
(category 0), this dark zoneis likely continued endlessly. With isometriesof the categories1
and 2 another courseis possible. Though it is visible in Figure 4.3 (c) - (e) that repetitions
of certain blocks can not always be avoided, but they are less visible, becauseof previous
transformations. But also Figure 4.3 (f ) - (j) shows that for highly deterministic textures the
application of isometries can even lead to worse results. In this casethe Herringbone Wave
is not always continued correctly, and the results appear worse than without application of
additional isometries(Figure 4.3 (g)). For thesecasesa higher variabilit y of the output image
is normally not desired. So we seethat the application of isometries always dependson the
application area.
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Figure 4.2: Distance values of the search for the next block (continuation from Figure 3.12
(a) - (c)). For each block the noted isometriesare applied. The best result is presented in the
graphic. (a) Distance valueswithout additional isometries (category 0). (b) Distance values
with isometries category 1. (c) Distance values with isometries category 2. (d) Distance
valueswith isometriescategory 1 and 2.



4.1. APPLICA TION OF ISOMETRIES 29

(a) (b) (c)

(d) (e)

(f ) (g) (h)

(i) (j)

Figure 4.3: Patch basedsynthesis with application of additional isometries. Results. For all
synthesized imagesthe parameterswb = 25, we = 5, n = 5 are used. All synthesized images
are initialized with the same,deterministic block B , to enablea better comparison. Size of
the input textures 150� 150, size of the synthesized images200� 200. In brackets time in
seconds. (a) Input texture. (b) Synthesized image, application of isometry category 0 (17
s). (c) Synthesized image, application of isometry category 1 (46 s). (d) Synthesized image,
application of isometry category 2 (57 s). (e) Synthesizedimage,application of isometry cat-
egories1 and 2 (83 s). (f ) Input texture [3]. (g) Synthesized image, application of isometry
category 0 (17 s) (h) Synthesized image, application of isometry category 1 (43 s). (i) Syn-
thesizedimage, application of isometry category 2 (57 s). (j) Synthesizedimage, application
of isometry categories1 and 2 (84 s).
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As disadvantages have to be seenthat the selection, if isometries should be applied, de-
pendson the characteristic of the input sample. Until today this estimation is done by the
user in a subjective manner. Further on the application of isometriesentails an increasingof
the computational cost. First, the computational cost is increasedby applying the transfor-
mations to the blocks. But this only has to be calculated once, and can be done before the
synthesis process.Second,the computational cost is increasedby calculating more distance
values d, which has to be done for each synthesized block. So roughly estimated - neglect-
ing the increasede�ort by applying the isometries to the blocks - the computational cost is
multiplied by the number of applied isometries.

Concluding it can besaid that an application of isometriesis only recommendedfor highly
stochastic textures, where also a highly variable output texture is desired. Becauseof an
increasingof the computational cost and possibleundesiredtransformations, the application
of isometriesshould be restricted to all necessaryisometries.

4.2 Prev ention of Rep etitions

As further mentioned in Section 3.5, patch basedsampling leads from time to time to an-
noying, visible repetitions of certain image parts. So we are further looking for a possibility
to prevent repetitions as far as possible. Becauseof the restricted size of the input sample
I sample, repetitions can not be avoided, when the sizeof the synthesized texture exceedsthe
size of the input sample. A �rst approach would be an equal distribution of all pixels from
taken the input sampleto the output texture. In respect of the quality of the synthesizedtex-
ture, a strict equaldistribution could lead to worseresults. An approach with a consideration
of the block neighborhoods suggestsitself.

4.2.1 Approac h

In general we follow the approach, to modify the block distance calculation. We do this by
introducing an additional block weight, depending on the number of repetitions of the whole
block or of parts of it. Di�eren t modesof marking the blocks can be imagined. One way could
be, to mark each singlepixel of the sampledblock asused. The block weight would have to be
calculated by an in generalweighted sum of the pixel marks of the analyzedblock. Although
this approach would be very accurate, it su�ers from the high introducedcomputational cost
becauseof the sum calculation for each analyzedblock.

Another approach is implemented by us. Let ci be a counter for each block B i � I sample.
In the beginning all blocks B i are marked as unused, meaning ci = 0. For each usageof a
block B i , this block and all blocks which are located within the spatial distanceof wb+ 2we � 1
pixels from B i are marked as used (Figure 4.4). This is done by increasing ci by one. The
considerationof neighbored blocks is done,becausethe in the distance of wb + 2we � 1 pixels
surrounding blocks also contain pixels of the actually sampledblock B i .

In the following the number of marks, represented by ci of each block B i , is consideredin
the further synthesisprocess.We do this by introducing a new distancedrepetition ;i = di + ci di ,
where di is the in Section 3.3.3 introduced distance. So a higher distance to the block B i is
assigned,whenever this block or parts of it could be sampledrepeatedly. But also the block
B i is in the caseof repetition not automatically pushedout of rangeand all other blocks given
a preference,even if they have a very bad matching and therefore a very high distance di . So
further a block, which could be repeated once, with a very small distance is preferred to a
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Figure 4.4: Prevention of repetitions. All blocks within the distance wb + 2we � 1 from B i

from the sampledblock B are marked as used.

block, whosedistance is very large. This is done with respect to the high visible corruption,
that a worseblock could cause.Always a high visual �delit y with repetitions is preferred to
a strict equal distribution.

4.2.2 Results

As in Figure 4.5 can be seen,the application of the above presented repetition prevention
algorithm can produce good results. Figure 4.5 (c) and (f ) and (h) show signi�cantly that
the synthesized image has lessnoticeable repetitions than the result produced without that
prevention. Very deterministic textures aresynthesizedwithout biggerproblems,although the
result is slightly worsethan without the application (Figure 4.6 (b), (c)). However application
to such textures is normally senseless,becausevery deterministic textures normally consist
in repeating regularly certain texels. The algorithm fails for not uniform input samples,as
Figure 4.6 (f ) shows. Problems in the transition between the dark and bright part can be
seen.The transition should be continued with dark blocks, but theseare already repeatedtoo
often. A solution for this problem could be found in a segmentation of the textures, and in a
further application of the algorithm to the single segments. As also can be seenin Figure 4.6
(i), the preventions fails for very small input sampleswith striking elements. Although Figure
4.6 (h) contains a lot of repetitions, theseare subjectively lesssigni�cant than in Figure 4.6
(i). Causefor this is that the in (h) repeated blocks belong to the very smooth image area.
The visual �delit y of the image (i) is worse, becauseof the multiple repetition of a striking
element. The computational e�ort of the algorithm is imperceptible in comparison to the
distance calculations during the search process,as the measuredvaluesshow.

As result can be drawn that this algorithm for prevention of repetitions works well for
large, uniform and highly stochastic input samples. As above showed, it fails for very small
and for not uniform input samples. An application to highly deterministic textures appears
senseless. In respect to the computational cost it is neutral compared to the cost of the
search process. However there are many possibilities to improve the algorithm. As already
above mentioned, for not uniform textures a segmentation of the textures and a following
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(a) (b) (c)

(d) (e) (f )

(g) (h)

Figure 4.5: Prevention of repetitions. Results (1). Size of the input images200� 200. Size
of the synthesized images 300 � 300. For demonstration purpose, synthesized images are
initialized identically. In brackets synthesis time in seconds. (a) Input image, gray scale8
bit/pixel. (b) Synthesizedimage,wb = 25; we = 5; n = 1. No prevention of repetitions applied
(73 s). (c) Synthesized image, wb = 25; we = 5; n = 1. Prevention of repetitions applied (73
s). (d) Input image, gray scale8 bit/pixel. (e) Synthesized image, wb = 25; we = 5; n = 1.
No prevention of repetitions applied (72 s). (f ) Synthesized image, wb = 25; we = 5; n = 1.
Prevention of repetitions applied (73 s). (g) Synthesized image, wb = 25; we = 5; n = 5.
No prevention of repetitions applied (73 s). (h) Synthesized image, wb = 25; we = 5; n = 5.
Prevention of repetitions applied (73 s).
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(a) (b) (c)

(d) (e) (f )

(g) (h) (i)

Figure 4.6: Prevention of repetitions. Results (2). Size of the input images (a) and (d)
200 � 200, (g) 150 � 150. Size of the synthesized images 300 � 300. For demonstration
purpose, the synthesized images are initialized identically. In brackets synthesis time in
seconds. (a) Input image. (b) Synthesized image, wb = 25; we = 5; n = 1. No prevention
of repetitions applied (183 s). (c) Synthesized image, wb = 25; we = 5; n = 1. Prevention of
repetitions applied (182 s). (d) Input image, gray scale8 bit/pixel. (e) Synthesized image,
wb = 25; we = 5; n = 1. No prevention of repetitions applied (72 s). (f ) Synthesized image,
wb = 25; we = 5; n = 1. Prevention of repetitions applied (73 s). (g) Input image, gray scale
8 bit/pixel. (h) Synthesized image, wb = 25; we = 5; n = 1. No prevention of repetitions
applied (34 s). (i) Synthesized image, wb = 25; we = 5; n = 1. Prevention of repetitions
applied (34 s).



34 CHAPTER 4. IMPR OVEMENTS

application to the segments could be imagined. Problem further is that the algorithm does
not take in account the relative position of repeated blocks to each other. The algorithm is
dependent on the number of sampledblocks betweenpossiblerepetitions. Becauseof this and
a processingin raster scanorder, repetitions in horizontal direction are more improbable than
in vertical direction. Soit still could be, if all blocks are marked again betweenthe processing
of a certain block and the block just below, that this block is repeated directly below. This
could be improved by regarding the local distance betweenpossibly repeated blocks.

4.3 Application of a Multiresolution Pyramid

One of the main critics to the existing algorithm is the high computational cost. As can be
seenin Section3.4, the computational e�ort is highly dependent on the sizesof input sample
and neighborhood. An acceleration of the algorithm could be reached, if these parameters
can be reduced. One approach, to do this, is a processingin various resolutions, as already
proposedby [13], [20] and [22].

4.3.1 Approac h

Multiresolution analysis of images is already highly common. We do this by applying a
multiresolution pyramid (MRP) to the input sample I sample and the already processedpart
of the output texture I . The pyramid has one base (l = 0) and two reduced (l = 1; 2)
levels l (Figure 4.7 (a)). Each reduced level l contains the �ltered and with the factor 2
subsampledimage of the lower level l � 1. Filtering is done with a mean �lter with a mask
of 3 � 3. The �ltering and subsampling, �rstly to level l = 1 and secondly to level l =
2, are applied to the input sample I sample and the already processedoutput texture I to
obtain I sample;level l and I level l . Afterwards, the patch basedsearch algorithm, as presented
in Chapter 3, is applied to level l = 2 of the MRP. Note that the sizesof the patch R and
neighborhood � R have to be adapted to bwb=2l c and bwe=2l c. After having chosena block
B level l , which matches the criterion 
 0, this block is projected onto the next lower level
l � 1 = 1 to receive B level l� 1. An area A � I sample;level l� 1 is cut of I sample;level l� 1 with the
sizeof (2(bwb=2l c+ 2bwe=2l c)) � (2(bwb=2l c+ 2bwe=2l c)) centered around B level l� 1 (Figure 4.7
(b)). Within this area A the search processis continued by another application of the block
search algorithm. This is analogically repeated until a block B level 0 from level 0 is chosen.
Finally this block B level 0 is sampledto the output image I .

4.3.2 Results

The number of di�erence operations/block at level 2 is

nop;level 2 � (bwsample=4c� wb;2 � 2we;2 + 1)(bhsample=4c� wb;2 � 2we;2 + 1) � 2we;2(wb;2 + 2we;2);

where wb;l = bwb=2l c and we;l = bwe=2l c. At level 1 are

nop;level 1 � ((2wb;1+ 4we;1� wb;1� 2we;1+ 1)((2wb;1+ 4we;1)� wb;1� 2we;1+ 1)�2we;1(wb;1+ 2we;1)

operations necessary, and �nally remain for level 0

nop;level 0 � ((2wb;0+ 4we;0)� wb;0� 2we;0+ 1)((2wb;0+ 4we;0)� wb;0� 2we;0+ 1)�2we;0(wb;0+ 2we;0)
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Figure 4.7: Multiresolution processing. (a) 3 level MRP. Image I sample is represented in
original resolution I sample; level0 (300� 300, level 0) and two reducedresolutions I sample; level1

(150 � 150, level 1) and I sample; level2 (75 � 75, level 2). (b) Block B level l is chosen from
pyramid level l. It is projected to the next lower level l-1. A new search area A (yellow) is
selectedaround B level l� 1.
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Figure 4.8: Number of di�erence operations/pixel dependingon the sizeof I sample (assuminga
quadratic I sample). Pixel basedsynthesis: we = 25, he = 13. Patch basedsynthesis: wb = 25,
we = 5. Patch basedsynthesis (MRP): wb = 25, we = 5, application of a 3-level MRP.
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operations. We obtain

nop;pyramid �
(nop;level 2 + nop;level 1 + nop;level 0)

(wb + 2we)(wb + 2we)

di�erence operations for the processingof one pixel. As in former approaches,a preciseedge
handling has beenneglected. Also neglectedin above calculations was the e�ort for �ltering
and subsampling. We regard this cost assmall in comparisonto the cost of the search process.
Filtering and subsamplingof I sample hasonly to be doneonce. From the processedI only the
processedparts of the neighborhood have to be reduced in their resolution. So the number
of operations/synthesizedpixel can be clearly reducedby the application of a multiresolution
analysis, as Figure 4.8 shows. A clear gain in e�ectiv enesscompared to patch basedtexture
synthesis without MRP and to pixel basedtexture synthesis could be made.

Despite of the gain in computational cost, the algorithm producesgood output results
for highly stochastic textures, as Figure 4.9 shows. The quality of the synthesized texture
is equal for highly stochastic textures in comparisonto patch basedsynthesis without MRP.
Sometimesa trend to very smooth image areascan be observed (Figure 4.3 (i)). For highly
deterministic textures with many similar blocks the algorithm with MRP produces worse
results than without MRP (Figure 4.10 (c)). It can be seen,that the block transitions do not
match exactly. Becauseof the high similarit y of the input texture can be assumedthat the
algorithm already choosesa wrong block B level 2 at the highest pyramid level l = 2. At this
point the algorithm could be advanced,e.g. by application of a quad tree pyramid ([13], p. 15
seqq.) instead of the here introduced MRP. Also an application of other �lter (e.g. Gaussian
kernel) could be considered.

Concluding it can be said, that the application of a MRP leads - for highly stochastic
textures - to a massive shortageof synthesis time and producesimageswith the samequality.
Only for highly deterministic textures with many similar blocks a slight reduction of the
quality can be observed. Although of great improvements in the computational e�orts, the
algorithm still dependshighly on the sizeof the input texture.

4.4 Summary

The in this chapter introduced methods advance the in Chapter 3 presented patch based
texture synthesis. The introduction of isometries (Section 4.1) improves the stochastic vari-
abilit y of the synthesized image by application of transformations to the synthesizedblocks.
Unfortunately it brings along an increasing of the computational cost by a comparison of
more blocks. Also it could help to reducevisible block boundariesby a better transition of
structures. Visible repetitions could be prevented with the algorithm for prevention of repeti-
tions (Section 4.2). It is in its computational cost neutral, but could lead to worsesynthesized
imagesfor not uniform textures and very small input samples. Finally the application of a
MRP (Section 4.3) leads to a massive improvement in computational cost, and for stochas-
tic textures no loss in quality can be observed. But still a high dependencyon the size of
the input sample remains. Still not su�cien tly solved is that as a matter of principle block
bounds could becomevisible. This could be improved by the application of isometries, but
not totally avoided. We do not think that this can be solved by a block basedalgorithm.

The in this chapter introduced improvements do in generalnot work well for all typesof
textures. They were introduced for the work with highly stochastic textures, and especially
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(a) (b) (c)

(d) (e) (f )

(g) (h) (i)

(j) (k) (l)

Figure 4.9: Patch basedtexture synthesiswith application of a MRP. Results (1). Sizeof the
input images200� 200, sizeof the synthesizedimages200� 200. For demonstration purpose,
imagesare initialized identically. In brackets time in seconds.(a) Input image, gray level 8
bit/pixel. (b) Synthesized image, wb = 25, we = 5, n = 5. Patch basedsynthesis without
MRP (33.4 s). (c) Synthesized image, wb = 25, we = 5, n = 5. Patch basedsynthesis with
MRP (1.0 s). (d) Input image. (e) Synthesized image, wb = 25, we = 5, n = 5. Patch based
synthesiswithout MRP (87.1 s). (f ) Synthesizedimage,wb = 25, we = 5, n = 5. Patch based
synthesiswith MRP (2.9 s). (g) Input image. (h) Synthesizedimage,wb = 25, we = 5, n = 5.
Patch basedsynthesis without MRP (86.4 s). (i) Synthesizedimage,wb = 25, we = 5, n = 5.
Patch basedsynthesis with MRP (2.8 s). (j) Input image. (k) Synthesized image, wb = 25,
we = 5, n = 5. Patch basedsynthesis,without MRP (84.2 s). (l) Synthesizedimage,wb = 25,
we = 5, n = 5. Patch basedsynthesis with MRP (2.8 s).
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(a) (b) (c)

Figure 4.10: Patch basedtexture synthesis with application of a MRP. Results (2). Size of
the input images 200 � 200, size of the synthesized images 200 � 200. For demonstration
purpose,imagesare initialized identically. In brackets time in seconds.(a) Input image. (b)
Synthesized image, wb = 25, we = 5, n = 5. Patch basedsynthesis without MRP (85.6 s).
(c) Synthesizedimage, wb = 25, we = 5, n = 5. Patch basedsynthesis with MRP (2.8 s).

problems with highly deterministic textures can be seen. As already pointed out in the
introduction, our e�orts are mainly based in synthesizing highly stochastic textures, so no
further e�orts to solve theseproblems were done.



Chapter 5

Mo di�cations in the Application of
the Patch Based Synthesis

In the chapters from above, patch based texture synthesis was intro duced and advanced.
Thereby in all thosee�orts the initial, basicproceedingto synthesizea completely newtexture
from an input sample (Chapter 3) was followed. The synthesized texture I was initialized
with a randomly sampled block from I sample. Afterwards, a processingin raster scan order
was applied. All in I sample available blocks could be usedfor the synthesis.

But other applications can be imagined. This chapter introducesand discussesthe by us
made modi�cations to the application of the algorithm. The basic conceptsof the algorithm
consist further.

5.1 Initialization of the Synthesized Image with the Input
Sample

In the previous approach (Section 3.2.2) the output texture I is initialized with a randomly
sampledblock from I sample. For certain application areasa variation of this could bepreferred.
So it is sometimesdesired, not to generatea completely new texture I , but to expand the
input sample I sample to a certain size. We do this by initializing the output texture I with
I sample (Figure 5.1 (a)) at the left, and enlarge I sample with synthesized blocks to the right
(Figure 5.1 (b)). For this enlargement a processingin raster scanorder is applied, where the
neighborhoods � R of the already sampledblocks and the zoneof the width of we pixels at the
very right of of I sample serve as neighborhoods. The limitation to an expansion to the right
side can easily be bypassedby a rotation of the synthesized texture after a �rst synthesis
through 90� and a following expansionof the synthesizedtexture with a new synthesis.

5.2 Av oidance of Mark ed Pixels

For certain applications it could be desired that the synthesized image I does not contain
certain image areasor single pixels of I sample. We solve this problem by neglecting all blocks
B � I sample for synthesis, which contain a pixel p 2 B of a certain, user de�ned color C. So
the synthesis processis further applied to the set B = f B � I samplejp 2 B 6= Cg instead of
the whole input sample I sample. Undesired regionsor pixels have to be de�ned manually by

39
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we

(a) (b)

Figure 5.1: Initialization of the output texture I with I sample. (a) The output texture I is
initialized with I sample. The yellow marked region of width we is used as neighborhood for
the following synthesis. (b) Synthesis in progress. The image is synthesized in raster scan
order, from top to bottom and from left to right.

(a) (b) (c)

Figure 5.2: Avoidanceof marked pixels. (a) Input sample(300� 300), gray scale8 bit/pixel.
Dark region at the image boundary should be avoided. (b) The undesired region is marked
with C = black by the user. (c) Synthesized image (300 � 300). Elapsed time for synthesis
243 s.

the user. This is done by painting them in the color C (Figure 5.2).

5.3 Segmentation of Input Sample and Output Texture

Consequently not only certain blocks should be avoided, but the user should be able to
de�ne the segmentation of the synthesized texture. We have implemented a way to de�ne a
segmentation of the output texture I , consisting of two segments, and synthesizeI according
to the de�ned segments.

5.3.1 Approac h

We partition manually the texture sample I sample and the desiredsynthesizedtexture I into
two segments. This is doneby using two segmentation schemesI sample; seg and I seg, signaling
the partitions of the textures. The segmentation schemesconsist of a segmentation into two
di�eren t regions S1 and S2 (Figure 5.3). The segmentation schemesmust assigneach pixel
p 2 I sample; I uniquely to a region S1; S2. Further on for each region S1; S2 must exist at least
one block B 0 � I sample, which can completely be assignedto this region S1; S2.
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(c)

Figure 5.3: Partitioning of I sample and I into two segments S1 and S2, using two segmentation
schemes. (a) Input sample I sample. The segmentation can easily be seen. (b) Segmentation
schemeI sample; seg of I sample. (c) Segmentation schemeI seg of I .
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Figure 5.4: Sampling of blocks dependent on the segmentation. The regions, to which the
block in I sample (left) belongs,must be identical to the region, to which the block is sampled
in I (right).

In the following all blocks B 0 � I sample and all to be sampled blocks B � I are divided
into three sets G1; G2; G3. Set G1 contains all blocks which are fully located in region S1.
Set G2 contains all blocks which are fully located in region S2. All other blocks, which are
partially located in region S1 and region S2 are allocated to G3. During the synthesisprocess,
only blocks B 0 are taken in consideration for sampling, which belong to the sameset as the
to be sampledblock B (Figure 5.4).

To enablean as exact as possiblematching of the synthesizedblocks to the segmentation
scheme at the boundary betweenS1 and S2, a new distance dseg is intro duced. It considers
the di�eren t segmentation characteristics of the to besampledblock B 0and the scannedblock
B at the boundary.

dseg = d + � ~d(B ; B 0); � = const:;

whered = dmax; n (Section 3.3.3)and ~d(B ; B 0) is an appropriate distanceof the segmentations
of B and B 0.

In the following the distance ~d(B ; B 0) is de�ned. Let Bseg � I seg and B 0
seg � I sample; seg

be two blocks, containing the segmentations of B and B 0, in sizeand shape identical to the
blocks B , B 0. Further let Bseg;k 2 Bseg and B 0

seg;k 2 B 0
seg be two elements of these blocks,

representing, to which region S1, S2 the according pixel of B and B 0 belongs. We de�ne the
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operation 	 to the elements B seg;k and B 0
seg;k , so that

Bseg;k 	 B 0
seg;k = 0 if Bseg;k � B 0

seg;k

and
Bseg;k 	 B 0

seg;k = 1 if Bseg;k 6� B 0
seg;k :

So

~d = (A � 1
AX

k=1

(Bseg;k 	 B 0
seg;k)2)1=2;

whereA is the number of processedelements B seg;k , B 0
seg;k of a block. Note that the distance

~d = 0 for all blocks B , B 0, which are totally located in S1, S2.
Moreover two di�eren t requirements could be found to synthesize blocks, which fully

belong to a region S1, S2 or which belong to the boundary zone. For synthesizing blocks
at the boundary zone it could be desired, that these blocks match as good as possible the
segmentation boundary, with very lessstochastic variabilit y, whereasfor blocks contained in
a region S1, S2 a high stochastic variabilit y could be desired. We meet these requirements
by introducing two di�eren t distance tolerancesdmax; n for all blocks B in G1 and G2, and
dmax; n0 for all blocks B in G3. Sodirectly and independently on the other synthesizedblocks
the variabilit y of the sampledblocks at the boundary can be de�ned by the parameter n0.

5.3.2 Free Parameters

Someparameters remain undeclared. The parameter � regulates the in
uence of the exact
boundary characteristic to the synthesis. Figure 5.5 shows examplesfor various valuesof � .
We madegood experienceswith an � = [1:5;2:5]. In our following approacheswe set therefore
� = 2. A too small � does not take su�cien tly in account the boundary characteristic. As
Figure 5.5 (d) and (e) show, a smooth block transition of the sampledblocks is preferred to an
exact matching of the boundary, becausethe distanceof the seamsis weighted too strong. An
� = 2 producesgood results. In Figure 5.5 (f ) a good matching of the boundary characteristic
can be seen. Problems with the boundary matching can only be observed for the block at
the top of the boundary. In contrast to that in the Figures 5.5 (g), (h) the distance for the
boundary characteristic is weighted too strong. A missing smooth transition of the sampled
blocks can be observed, single blocks can easily be recognized. As also can be seen,for very
high � the synthesis algorithm tends to produce stepsat the segmentation boundary.

For the parameters n and n0 we refer to Section 3.3.4. The parameter n regulates the
stochastic variabilit y of the output texture in the regions, which do not belong to the seg-
mentation boundary. We recommendn � 5, but this value should be adapted to the desired
characteristic of the synthesizedtexture. Whereasthe parameter n0 de�nes the variabilit y of
the segmentation boundary, this variabilit y has to be seencritically in aspect to the visual
quality of the synthesizedboundary. Thereforewerecommenda smallern0 that the variabilit y
of the chosenblocks doesnot have any negative impact to the segmentation boundary. Good
results have beenmade with an n0 � 1.

5.3.3 Results

The algorithm producessegmented textures of a good visual �delit y. Essentially for a good
characteristic of the synthesized boundary between the two segments is the application of
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(a) (b) (c) (d)

(e) (f ) (g) (h)

Figure 5.5: Segmentation of input sample and output texture. Variations of � . Size of the
images150� 150, gray scale8 bits/pixel. wb = 7, we = 4, n = 5, n0 = 1. Isometries of the
categories1 and 2 applied. In brackets time in seconds.(a) Input texture. (b) Segmentation
of the input texture. (c) Segmentation of the output texture. (d) Synthesizedimage, � = 0:5
(50 s). (e) Synthesized image, � = 1:0 (51 s). (f ) Synthesized image, � = 2 (50 s). (g)
Synthesizedimage, � = 3 (49 s). (h) Synthesizedimage, � = 5 (51 s).
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(a) (b)

(c) (d)

Figure 5.6: Segmentation of input sampleand output texture. Results (1). Sizeof the images
300� 300. wb = 25, we = 5, n = 5, n0 = 1, � = 1. Isometries of the categories1 and 2
applied. Application of MRP. (a) Input texture. (b) Segmentation of the input texture. (c)
Segmentation of the output texture. (d) Synthesizedimage. Elapsedtime for synthesis 35 s.
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(a) (b)

(c) (d)

Figure 5.7: Segmentation of input sampleand output texture. Results (2). Sizeof the images
300� 300, gray level, 8 bit/pixel. wb = 10, we = 5, n = 5, n0 = 2, � = 2. Isometries of the
categories1 and 2 applied. (a) Input texture. (b) Segmentation of the input texture. (c)
Segmentation of the output texture. (d) Synthesizedimage. Elapsedtime for synthesis598s.
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(a) (b)

(c) (d)

(e)

Figure 5.8: Segmentation of input sampleand output texture. Results (3). Sizeof the images
256� 256, gray scale8 bits/pixel. wb = 7, we = 4, n = 5, n0 = 1. Isometriesof the categories
1 and 2 applied. (a) Input texture. (b) Segmentation of the input texture. (c) Segmentation
of the output texture. (d) Synthesized image, � = 1:5 (559 s). (e) Synthesizedimage, � = 0
(560 s).
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isometriesto the algorithm. Only with this application it is possibleto synthesizesegmenta-
tion boundaries of not identical characteristics as the segmentation boundaries of the input
samples.

The synthesis algorithm for segmented textures was developed for highly stochastic tex-
tures with very smooth transitions betweenthe segments. For thesecasesresults with a high
visual �delit y are produced (Figure 5.6), and this is done with application of a MRP with
a low computational e�ort. If the transitions have a boundary with a strong contrast, good
results only could be gained for these parts of the synthesized boundary, which also can be
found (e.g. transformed) in the boundary of the input sample. For all other parts of the
boundary the algorithm fails (Figure 5.7). E.g. a failing of the algorithm can be observed
for very �ne structures at the segmentation boundary (Figure 5.8). Further on for a satisfy-
ing synthesis of the segmentation boundary, the sizesof patch and neighborhood have to be
chosenvery small. This leadsto a lack of capturing bigger texels of the input sampleand of
transferring them to the output texture. Also an increasedcomputational e�ort is causedby
this. Finally for imageswith a high contrast betweenthe two segments, visual in�delities are
introduced by the blending (Figures 5.5, 5.8).

The visual in�delities, introduced by blending, are a problem of the algorithm and can
only be advancedby a very small neighborhood we. Alternativ ely another block arrangement
method (e.g. [5]) could be considered.All other above mentioned problemshave their source
in the limited number of blocks at the image boundary of the input sample I sample. A block
based method can only sample a limited number of output characteristics from a limited
number of input characteristics. One solution to avoid visual in�delities in the output texture
would be an adaptation of the desiredsegmentation boundary to the segmentation boundary
of the input sample. Whenever a strict characteristic of the output segmentation boundary
is not necessary, an � = 0 has also lead to good results. In this case,the exact boundary
characteristic is not regarded,and the highest priorit y of the algorithm is given in generating
smooth transition betweenthe sampledblocks. Figure 5.8 (e) hassubjectively a higher visual
�delit y than Figure 5.8 (d).

Synthesis with very small wb is done to obtain a good matching to the segmentation
boundary. But it increasesthe synthesis time and it is not able to capture bigger texels.
Somemethods could be considered,to avoid theseproblems. So it could be imagined to use
further on large wb for texture synthesisof the blocks, which are not part of the segmentation
boundary. At the boundary the blocks could be scaleddown and synthesis of the boundary
zone could be done with the down scaled blocks. Another approach could be, to combine
pixel and patch basedsynthesis. So the image parts, which do not belong to the boundary,
�rstly could be synthesizedwith patch basedtexture synthesis. The parts, which belong to
the segmentation boundary, then could be synthesizedwith the pixel basedsynthesismethod
(Chapter 2). So an exact matching of the segmentation boundary could be reached.
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Chapter 6

Conclusions and Perspectiv e

What conclusionscan be drawn from this work? It was demonstrated that patch basedtex-
ture synthesis is an appropriate method to synthesize textures. Good results have not only
beenobtained for highly stochastic textures, but alsofor very deterministic ones. Texelplace-
ment of the input samplecan easily be caught by the patch, whereasthe seamtransfers the
constraints of synthesizedblocks. Soa high visual �delit y of the texture can be reached. The
computational e�ort of the patch basedtexture synthesis is largely improved in comparison
to the pixel basedmethod.

Neverthelessthe patch basedmethod has still problems. First, a trend to markable repe-
titions is observable. Second,the synthesized texture has an insu�cien t variabilit y. Further
on for somestructured textures the block boundariescan be seen,and the applied feathering
leads to an smoothing along these boundaries. Finally, the computational e�ort is still too
high.

Advancesin the computational cost could begainedby the application of a multiresolution
imagepyramid to the texture analysis. With that the computational e�ort could beminimized
in someorder of magnitude. But it is still highly dependent on the sizeof the input sample.
Further approachesshould try to decreasethis dependencyfurther.

Our approaches to a prevention of repetitions only make sensefor highly stochastic tex-
tures. The algorithm works well for su�cien tly large input samples. With respect to a very
low additional computational cost causedby this algorithm, the results are satisfying. But in
generala higher visual quality could be desired. Approaches in this direction could consider
the spatial distance of the potentially repeated blocks. Also approaches,which exclude only
blocks with a striking feature, could be imagined.

A higher variabilit y of the synthesizedimagecould be reached by the application of isome-
tries. The approach seamsreasonableand producesresults of an undiminished, high visual
quality. Also it could help to reducethe visibilit y of markable repetition by block transforma-
tions. But it causesa by the number of applied isometries multiplied computational e�ort.
With this disadvantage the application of isometrieshas to be consideredvery well.

The synthesis algorithm is not only useableto synthesizecompletely new textures from a
given texture sample. By marking certain pixels in the sample as undesired, e�ectiv ely the
input sample only was reduced. But this could be used to create new, clean textures from
input sampleswithout disturbing artifacts. Another step in this direction wasthe application
of texture synthesis to segmented textures. Sonew segmented textures could be created. The
algorithm works well for highly stochastic textures with no clear segmentation boundary. It

49



50 CHAPTER 6. CONCLUSIONS AND PERSPECTIVE

fails for all strict deterministic boundaries,which do not have a complementary in the input
sample. At this point the combination of patch and pixel basedtexture synthesis could lead
to better results.

Further applications of the algorithm can be imagined. Logical consequenceof the dis-
regarding of certain image parts for the synthesis of a completely new image is, to replace
theseimage parts directly within the image (cp. [8], [17]). We proposefor this casea combi-
nation of pixel and patch basedtexture synthesis. The patch basedmethod would be suited
for synthesis of larger areas,whereasboundary parts could be synthesized with pixel based
synthesis. The sameconsiderationsare valid for the synthesis of missing blocks in textures,
e.g. causedby transmission errors.

A direct application could be imagined for the introducedand further advancedsynthesis
of segmentations. Pictures, consisting of various textures, could be createdby a few samples.
Typical examplesfor this are landscapes. So e.g. varying landscapes could be synthesized
and usedin trick �lms or video games.In thesetwo application areasa trend to high realistic
pictures can be observed.

Open question is still, if texture synthesis can make it into the domain of conventional
lossy sourcecoding, although the proposedapplication to trick �lms and video gamescould
lead us to this assumption. Until today it su�ers from a too lessdeterministic output texture,
with a too varying visual �delit y and a too high computational cost. Sono satisfying solutions
e.g. for the sourcecoding of motion pictures can be produced.

Concluding it can be said that texture synthesis has great chancesfor application in the
future. Patch basedtexture synthesis has �rstly shown a way to generatequickly textures
of a high quality. With the here introduced modi�cations to the algorithm, some defects
could be remedied,and already someapplication areascould be found. But there still remain
possibilities to improve the algorithm and enableso a further distribution of this technique.
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App endix A

User Man ual

In the following, an user manual for the implemented functions of patch basedtexture syn-
thesis is provided. The implementation was done by adding the functions to the already
existing software PdiWin32, which was created by the Departamento de Comunicacionesof
the university UniversidadPolit �ecnicade Valencia. The software wasdeveloped for Microsoft
Windows operating systems. It is assumedthat the reader is familiar in the usageof the basic
conceptsof the windows operating systems.

Two menu entries have been added to the pull down menu VENIS . The entry Patc h
Based Synthesis provides the possibilities, to synthesizenew imagesfrom existing textures
samplesand to enlargeexisting input samplesto the right by patch basedtexture synthesis.
The entry Segmentation Synthesis (P atc h Based) providesthe possibility to synthesizea
de�ned segmented texture from an input sampleand two segmentation schemesusing patch
based texture synthesis (Figure A.1). The entries are explained in the according sections
below.

A.1 Patch Based Synthesis

The menu entry Patc h Based Synthesis can be found in the pull down menu VENIS .
It provides all in this work presented possibilities to synthesize textures with patch based
texture synthesis, except for synthesisof segmentations. Pleasenote that the texture sample,
from which should be sampled,hasto be openedand selectedbeforechoosingthe menu entry.
The opening of graphic �les can be done in the pull down menu Arc hiv o, entry Abrir . The
�le then can be openedwith the common windows dialog.

After having chosen the menu entry, the dialog box VENIS: Patc h Based Texture
Synthesis appears(Figure A.2 (a)). This dialog box servesfor choosingdi�eren t applications
and to modify parameters. In the following the entries are presented:

Patc h size: Sets the patch size wb, which is applied in the synthesis process. The default
value is set to 25. The input box expects an integer value 1 � wb � 99999.

Seam size: Sets the size of the neighborhood (seam) we, which is applied in the synthesis
process.The default value is set to 5. The input box expectsan integer value 1 � we �
99999.

Num ber of eval. Blo cks: Sets the number of blocks n usedas distance tolerance dmax; n.
From the n blocks with minimum distance d the sampled block is chosen randomly.
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Figure A.1: PdiWin32 shows after starting an empty desktop. The two entries Patc h Based
Synthesis and Segmentation Synthesis (P atc h Based) wereaddedto the menu VENIS .

(a)

(b)

(c)

Figure A.2: (a) The dialog box VENIS: Patc h Based Texture Synthesis . (b) The dialog
box Patc h Based Texture Synthesis: Output Size. (c) The dialog box Patc h Based
Texture Synthesis: Output Size.
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Note that this distance tolerance would only be applied, if the �eld Bound: Best
Blo cks is selected. The default value is 5. The input box expects an integer value
1 � n � 99999.

Epsilon: Sets the � as distance tolerance dmax; � according to Liang [13]. Note that this
distance tolerancewould only be only applied, if the �eld Bound: Epsilon is selected.
The default value is 0.1. Expects a positive 
oat value.

Button group Bound: In this button group the choicebetweenthe two presented distance
tolerancesdmax; n and dmax; � can be set (seealso Section 3.3.4):

Best Blo cks: Selectsthe distancetolerancedmax; n. The sampledblock is chosenfrom
the n best blocks. The parameter n can be speci�ed in the input box Num ber of
eval. blo cks.

Epsilon Bound: Selectsthe distance tolerance dmax; � . The parameter � can be spec-
i�ed in the input box Epsilon . If no block matches the � -criterion, the best block
is sampled.

The distance tolerance is by default set to Best Blo cks.

Usage of isometries (180 degrees): Isometries of the category 1 (compatible 180� ) are
applied to the blocks consideredfor sampling (Section 4.1), if the check box is selected.

Usage of isometries (90 degrees): Isometries of the category 2 (compatible 90� ) are ap-
plied to the blocks consideredfor sampling (Section 4.1), if the check box is selected.

Discard Blo cks with Blac k Pixels: All blocks of the input sample,which contain at least
oneblack pixel (all RGB components 0) are discardedfor synthesisprocess,if the check
box is selected(Section 5.2).

Try to Av oid Rep etitions: The in Section 4.2 introduced algorithm to prevent repetition
of sampledblocks is applied, if the check box is selected.

Button group Output Mo de: In this button group, the desired output mode can be se-
lected.

Create New Image: The output texture is initialized with a randomly chosenblock
from the input sample. Any user de�ned sizescan be chosenas output size. This
is the basic processingof the algorithm, introduced in Chapter 3.

Keep Existing Image: The output texture is initialized with the input sample. The
output texture consistsof an to the right enlargedinput sample(Section 5.1).

The output mode is by default set to Create New Image .

Button group Program Mo de: With this button group the mode of the texture synthesis
can be selected.

Standard Mo de: Texture synthesis is done without application of a MRP.

Pyramid Mo de: Texture synthesis is done with application of a MRP (Section 4.3).

The program mode is by default set to Standard Mo de.
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The pressingof the OK -button acceptsthe madesettings, whereasa pressingof the Cancel -
buttons discards them and returns to the PdiWin32 desktop.

In the following dialog the user has to specify the output sizeof the texture. Depending
on the setting madein the button group Output Mo de, oneof the following dialogsappears.

Create New Image selected: The dialog Figure A.2 (b) appears. Within this dialog width
and height of the synthesizedimage can be de�ned within the input boxesWidth and
Heigh t . Both default values are set to 200. Both input boxes expect integer values
1 � value � 99999.

Keep Existing Image selected: The dialog Figure A.2 (c) appears. Within this dialog
the enlargement of the input sampleto the right can be speci�ed within the input box
Output Picture Enlargemen t (x-direction) . The default value is set to 100. The
input box expects an integer value 1 � value � 99999.

By con�rming this dialog with OK , the synthesis processis started. When completed, the
output picture is copied to the desktop of PdiWin32. Note that the synthesis processcan
last up to several hours, depending on the sizeof the input sample,sizeof the output sample
and applied isometries. Synthesized imagescan be saved using the Guardar and Guardar
como... functions from the pull down menu Arc hiv o.

A.2 Segmentation Synthesis (P atch Based)

Also the menu entry Segmentation Synthesis (P atc h Based) can be found in the pull
down menu VENIS . It provides the possibilities to synthesizede�ned texture segmentations
(of max. two segments) by patch basedtexture synthesis. Beforeapplying the function, three
input images are neededto be opened. These imageshave to be in size and color format
identical (i.e. all have to be color or gray scale). The needed�les are:

Input sample: The sample image, from which is sampled.

Segmentation of the input sample: The Segmentation of the input samplehasto consist
of two colors,black and white. It hasto represent the segmentation of the input sample,
painting one segment black, and the other segment white. Note that the segmentation
scheme has to have the samecolor format as the input sample,also if containing only
two colors.

Segmentation of the output texture: This segmentation schemehasto represent the de-
sired segmentation of the output texture. As the segmentation scheme of the input
sample, it has to consist of two di�eren t colors, black and white. Pleasenote that the
segmentation schemehas to be in sizeand color format identical to the input sample.

These imageshave to be openedin the PdiWin32 desktop. This can be done with the entry
Abrir from the pull down menu Arc hiv o. Further on the input samplehasto selectedbefore
continuing.

After having chosen the menu entry Segmentation Synthesis (P atc h Based) from
the pull down menu, the dialog box Select Other Image (Figure A.3 (a)) appears. In this
dialog box the segmentation of the input sample has to be selected. After con�rming this
with OK , another dialog box Select Other Image Figure A.3 (b)) is presented, in which
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(a)

(b) (c)

Figure A.3: (a) Dialog box Select Other Image to select the segmentation of the input
sample. (b) Dialog box Select Other Image to select the segmentation of the output
texture. (c) Dialog box VENIS: Segmentation Synthesis (P atc h Based)
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the segmentation of the output samplehas to be chosen. Note, if the segmentation schemes
do not appear in these boxes, pleaseensurethat they are in size and color format identical
to the input sample. This can easily be done with the function Informacion from the pull
down menu Ver.

After selecting the appropriate imagesand con�rming the selection with OK , the dia-
log box VENIS: Segmentation Synthesis (P atc h Based) (Figure A.3 (c)) is shown to
the user. Within this dialog box all relevant parameters for segmentation synthesis can be
modi�ed.

Patc h Size: Sets the patch size wb, which is applied in the synthesis process. The default
value is set to 25. The input box expects an integer value 1 � wb � 99999.

Seam Size: Sets the size of the neighborhood (seam) we, which is applied in the synthesis
process.The default value is set to 5. The input box expectsan integer value 1 � we �
99999.

Input box Num ber of Eval. Blo cks: Sets the number of blocks n used for the distance
tolerance dmax; n. From the n blocks with minimum distance d the sampled block is
chosen randomly. The default value is 5. The input box expects an integer value
1 � n � 99999. This distance tolerance is only applied to all blocks, which are sampled
fully to a segment of the segmentation.

Num ber of Eval Blo cks at Bound: As above, this input box sets the number of blocks
n0 used for the distance tolerance dmax; n. From the n0 blocks with minimum distance
d the sampledblock is chosenrandomly. The default value is 1. The input box expects
an integer value 1 � n � 99999. This distance tolerance is applied to all blocks, which
are sampledto the segmentation boundary.

Alpha: The parameter � regulates the in
uence of the the boundary segmentation to the
distancecalculation (Section 5.3). This is only valid for all blocks, which are sampledto
the boundary of the segments. The default value is 2.0. Expects a positive 
oat value.

Usage of Isometries (180 Degrees): Isometries of the category 1 (compatible 180� ) are
applied to the blocks consideredfor sampling (Section 4.1), if the check box is selected.

Usage of Isometries (90 Degrees): Isometriesof the category 2 (compatible 90� ) are ap-
plied to the blocks consideredfor sampling (Section 4.1), if the check box is selected.

Button group Program Mo de: With this button group the mode of the texture synthesis
can be selected.

Standard Mo de: Texture synthesis is done without application of a MRP.

Pyramid Mo de: Texture synthesis is done with application of a MRP (Section 4.3).

The program mode is by default set to Standard Mo de.

By con�rming the chosen settings with the OK button, the synthesis processis started.
An image according to the output segmentation scheme, sampled from the input sample is
synthesized. The output texture is in sizeand color information identical to the input sample.
It is �nally copied to the PdiWin32 desktop. Pleasenote that the synthesis processmight
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last up to several hours, depending on the size of the input sampleand the chosensettings.
Synthesizedimagescan be saved using the Guardar and Guardar como... functions from
the pull down menu Arc hiv o.
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App endix B

Technical documen tation of the
implemen ted Soft ware

This appendix describesthe implemented code. First, generalinformations are given. Second,
the two main functions arepresented, and their usageis described. Finally, all visible functions
are documented.

The code description is groupedby �les. For the application of each function the according
header�le (\�lename.h") has to be included.

All in this appendix presented code is pseudocode. It follows the C++ code syntax, but
i.e. it is not complete. At the beginning of each code example,the to be included header�les
are presented:

#include <stdio.h>
#include "headerfile.h"

So it is showed that the header�les "stdio.h" "header�le.h" have to be included. Further on
it is signaledthat the �le "stdio.h" is part of the C++ standard library by the usageof < >.

Afterwards, brackets show the beginning and ending of the function.

{

}

As far as not otherwise mentioned, the presented (pseudo code) functions return an integer
value int .

All in the function used variables are declaredas in the C++ syntax. The usageof ...
signals the leave out of certain function parts, i.e. the memory allocation or initialization of
earlier declaredvariables. This is only done with respect to a compact description. The left
out parts are mentioned in the text and are already described earlier.

B.1 Do cumen tation

B.1.1 General

The code is written in C++ for Microsoft Windows (32 bit) systems. It is provided as source
code. The integration into the existing software PdiWin32 is done via the Borland C++
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development environment in the �le jppatchtexturesynthesis.c pp, whose description is
not part of this documentation. All other �les are independent on this project and are
written in standard C++.

The code was written with respect to a safeand easyerror handling. Philosophy behind
the written functions is, to give back an error code asan integer value. In all casesof an error
free, normal termination of the function, the function returns NO_ERROR. In all other casesan
error code accordingto the Victor Image Processinglibrary is returned. With respect to this,
the function should be called in the following manner:

int errorHandler;

if(NO_ERROR!= (errorHandler = function(...))){
errorHandling(errorHand ler) ;
return errorHandler;

}

The usederror codesare:

� NOERRORFunction is terminated normally. No error occurred during execution.

� BADMEMError with memory management occurred. The function is not able to allocate
memory or insu�cien t memory for execution allocated.

� BADRANGEVariable contains invalid value.

All the code was written for a Microsoft Windows (32 bit) operating system. In general
it is not portable, mainly becausethe memory allocation wasdonewith appropriate windows
functions.
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B.1.2 jptexturepatc h.h, jptexturepatc h.cpp

These�les provide the main patch basedtexture synthesis function:

int texture patch(imgdes *srcimg, imgdes *desimg, datapatch varpatch)

� Description: The function synthesizesan image imgdes desimg using patch based
texture synthesis from the input sample imgdes srcimg with the given parameters
datapatch varpatch . The parametersare the following:

struct datapatch{
long patch;
long seam;
long numEvalBlocks;
float epsilon;
int isometries_180_true;
int isometries_90_true;
int createNewImageTrue;
int discardBlackBlockTrue;
int useModePyramidTrue;
int avoidRepetitionsTrue;
findBestBound bound;

};

{ long patch Sizeof the patch (wb), quadratic. Expects a long integer value > 0.

{ long seamSizeof the seam(we). Expects a long integer value > 0.

{ long numEvalBlocks Number of n best blocks, which are regarded for synthesis
(distance tolerancedmax; n, Section3.3.4). Expectsa long integer value > 0. Only
valid if findBestBound == BOUNDNUMBER, elseset to 0.

{ float epsilon � of distancetolerancedmax; � (Section3.3.4). Expectsa 
oat value
> 0. Only valid, if findBestBound == BOUNDEPSILON, elseset to 0.

{ int isometries 180 true Application of isometriescompatible to 180� (isometries
category 1, Section 4.1), if TRUE. Expects TRUEor FALSE.

{ int isometries 90 true Application of isometries compatible to 90� (isometries
category 2, Section 4.1), if TRUE. Expects TRUEor FALSE.

{ int createNewImageTrue A completely new image is created, if TRUE. If FALSE,
the existing image is enlarged. Expects TRUEor FALSE.

{ int discardBlackBlockTrue If TRUE, all blocks containing black pixels are dis-
carded for synthesis process(Section 5.2). Expects TRUEor FALSE.

{ int useModePyramidTrueIf TRUE, a MRP is applied to the synthesis process.
Pleasenote that in this casethe size of patch and seamhave to be chosen large
enough(� 4). If FALSE, the synthesis is done without MRP (Section 4.3).

{ int avoidRepetitionsTrue If TRUE, additionally the algorithm for repetition pre-
vention is applied (Section 4.2). Expects TRUEor FALSE.
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{ findBestBound bound Selectsthe distance tolerance, which is used for synthesis
process.A setting to findBestBound BOUNDEPSILONselectsthe distancetolerance
dmax; � , whereasa setting to findBestBound BOUNDNUMBERselectsthe distance
tolerance dmax; n (Section 3.3.4). Expects BOUNDEPSILONor BOUNDNUMBER.

Sizesand color information of the output imageshave to be provided by the initialized
imgdes srcimg and imgdes desimg. The function returns an error code.

� Usage: In the following example, a new texture imgdes outTexture of 300 � 300 is
synthesized from imgdes inTexture . Patch size is set to 25, seamsize to 5. Distance
tolerance dmax; n is applied, n is set to 4. No additional isometries are applied, but
MRP. No application of repetition prevention, or discarding of certain pixels (blocks
containing black pixels) is used.
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#include <stdio.h>
#include "vicdefs.h"
#include "vicdef.h"
#include "jpmyerror.h"
#include "jptexturepatch.h"
{
int errorHandler;
imgdes inTexture;
...

// read out, if the input texture is color or gray scale
// value, how many bits/pixel are needed is saved in tmpBpps
// needed to allocate buffer for outTexure
int tmpWidth, tmpHeight, tmpBpps;
CalcularParametros(&inTex ture , &tmpWidth, &tmpHeight, &tmpBpps);

// image outTexture declared and initialized
imgdes outTexture;
if(NO_ERROR!= (errorHandler =

allocimage(&outTexture, 300, 300, tmpBpps))){
fprintf(stderr, "Unable to alloc for outTexture");
return BAD_MEM;

}

// allocation of values to datapatch synthesisData
datapatch synthesisData;
synthesisData.patch = 25;
synthesisData.seam = 5;
synthesisData.numEvalBloc ks = 4;
synthesisData.epsilon = 0; // not used
synthesisData.isometries_ 180_true = FALSE;
synthesisData.isometries_ 90_t rue = FALSE;
synthesisData.createNewIm ageTrue = TRUE;
synthesisData.discardBlac kBlo ckTr ue = FALSE;
synthesisData.useModePyra midTrue = TRUE;
synthesisData.avoidRepeti tion sTrue = FALSE;
synthesisData.bound = BOUND_NUMBER;

if(NO_ERROR!= (errorHandler =
texture_patch(&inTexture , &outTexture, synthesisData))){
fprintf(stderr, "Error at texture_patch()");
return errorHandler;

}
}
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B.1.3 jpsegmen tsyn th.h, jpsegmen tsyn th.cpp

These�les provide the main segmentation synthesis function, using patch basedtexture syn-
thesis:

int segmentSynth(imgdes *origImage, imgdes *inputSegmentation, imgdes
*outputSegmentation, imgdes *outputImage, dataSegmentSynth *varSegmentSynth)

� Description: The function provides the possibility to synthesizea segmented texture
imgdes outputImage with a segmentation imgdes outputSegmentation from an input
sample imgdes origImage with according segmentation imgdes inputSegmentation .
The segmentation must consistof two di�eren t segments, marked with black and white.
Further on the segmentations must be in size and color mode identical to imgdes
origImage . As distance tolerance dmax , the distance tolerance dmax; n is used (3.3.4).
The parameters of the synthesis can be set in dataSegmentSynth varSegmentSynth,
which is in the following described.

struct dataSegmentSynth{
long patch;
long seam;
long numEvalBlocks;
long numEvalBlocksAtBound;
float alpha;
int isometries_180_true;
int isometries_90_true;
int usePyramidModeTrue;

};
typedef struct dataSegmentSynth dataSegmentSynth;

{ long patch Sizeof the patch (wb), quadratic. Expects a long integer value > 0.

{ long seamSizeof the seam(we). Expects a long integer value > 0.

{ long numEvalBlocks Number n bestblocks, which are regardedfor synthesis(Sec-
tion 3.3.4). Expects a long integer value > 0. This value is only valid for all
synthesizedblocks, which do not touch the segmentation boundary.

{ long numEvalBlocksAtBoundNumber n0 best blocks, which are regardedfor syn-
thesis (Section 3.3.4). This value is only valid for all synthesized blocks, which
touch the segmentation boundary. Expects a long integer value > 0.

{ float alpha Parameter � , moderates the in
uence of the segmentation to the
synthesis processat the segmentation boundary (Section 5.3). Expects a 
oat
value � 0.

{ int isometries 180 true Application of isometriescompatible to 180� (isometries
category 1, Section 4.1), if TRUE. Expects TRUEor FALSE.

{ int isometries 90 true Application of isometries compatible to 90� (isometries
category 2, Section 4.1), if TRUE. Expects TRUEor FALSE.

{ int useModePyramidTrueIf TRUE, a MRP is applied to the synthesis process.
Pleasenote that in this casethe size of patch and seamhave to be chosen large
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enough(� 4). If FALSE, the synthesis is donewithout MRP (Section 4.3). Expects
TRUEor FALSE.

The function returns an error code.

� Usage: In the following example, the usageof segmentSynth() is demonstrated. The
texture imgdes outTexture , with segmentation imgdes outSegmentation is synthe-
sized from the input sample imgdes inTexture , with according segmentation imgdes
inSegmentation . Patch size is set to 10, seamsize is set to 4. Isometries of all two
categoriesare applied. No MRP is applied. � is set to 2.0. n is set to 5, and n0 (at the
segmentation boundary) is set to 1.
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#include <stdio.h>
#include "vicdefs.h"
#include "vicdef.h"
#include "jpsegmentsynth.h"
{
int errorHandler;
imgdes inTexture, inSegmentation, outSegmentation.
...

// read out, if the input texture is color or gray scale
// write how many bits/pixel to tmpBpps
// needed to allocate right buffer for outTexure
int tmpWidth, tmpHeight, tmpBpps;
CalcularParametros(&inTex ture , &tmpWidth, &tmpHeight, &tmpBpps);

// allocate memoryto outTexture
imgdes outTexture;
if(NO_ERROR!= (errorHandler =

allocimage(&outTexture, tmpWidth, tmpHeight, tmpBpps))){
fprintf(stderr, "Unable to alloc for outTexture");
return BAD_MEM;

}

// initialize dataSegmentSynth synthesisData
dataSegmentSynth synthesisData;
synthesisData.patch = 10;
synthesisData.seam = 4;
synthesisData.numEvalBloc ks = 5;
synthesisData.numEvalBloc ksAt Bound = 1;
synthesisData.alpha = 2.0;
synthesisData.isometries_ 180_true = TRUE;
synthesisData.isometries_ 90_t rue = TRUE;
synthesisData.usePyramidM odeTrue = FALSE;

if(NO_ERROR!= (errorHandler =
segmentSynth(&inTexture, &inSegmentation, &outSegmentation,

&outTexture, &synthesisData))){
fprintf(stderr, "Error at segmentSynth");
return errorHandler;

}
}



B.1. DOCUMENT ATION 69

B.1.4 jpm yimage.h, jpm yimage.cpp

These�les provide a to texture synthesis adapted image representation and handling. Image
representation is done with the type myImage. Color imagesthereby are represented in the
three RGB components. Switching betweencolor and gray scaleimagesis done via

enumcolorMode{BLACKWHITE,COLOR};

where BLACKWHITErepresents pictures with 256 gray levels/pixel and COLORrepresents color
images.

T yp e myImage

The type is myImageis de�ned as followed:

struct myImage{
unsigned char *imageBufferR;
unsigned char *imageBufferG;
unsigned char *imageBufferB;
colorMode mode;
unsigned long maxBufferSize;
long width;
long height;
HGLOBALhImageBufferR;
HGLOBALhImageBufferG;
HGLOBALhImageBufferB;
HGLOBALhMyImage;

};
typedef struct myImagemyImage;

� unsigned char *imageBufferR Pointer to an array of unsignedchar, containing the R
component of a color image, as image of 256 gray levels. If the image is gray level, this
bu�er contains the image of 256 gray levels. The array has the sizeof maxBufferSize .
The imagehasthe sizeof width � height , and is �lled in the array in raster scanorder,
from top to bottom and from left to right (i.e. the point (0,0) is the upper left corner
of the image). So the point (x,y) can be accessedby imageBufferR[y*width + x] .

� unsigned char *imageBufferG Pointer to an array of unsignedchar, containing the G
component of a color image. The pointer is NULL for all gray scaleimages. Processing
as above.

� unsigned char *imageBufferB Pointer to an array of unsignedchar, containing the B
component of a color image. The pointer is NULL for all gray scaleimages. Processing
as above.

� colorMode modeColor modeof the image. A colorMode == COLORmarks a color image
in RGB components, whereascolorMode == BLACKWHITEmarks a gray scaleimage.

� unsigned long maxBufferSize Size of the allocated image bu�ers imageBufferR ,
imageBufferG , imageBufferB . Note, if the image is allocated as gray scale (mode==
BLACKWHITE), the image bu�ers imageBufferG and imageBufferB are not allocated,
but NULL.
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� long width Width of the image contained in myImage. Value is set when myImageis
initialized (not when allocated!).

� long height Height of the image contained in myImage. Value is set when the image
is initialized (not when allocated!).

� HGLOBALhImageBufferR Windows memory handler. For allocating and freeing mem-
ory. Should not be accessed!

� HGLOBALhImageBufferG Windows memory handler. For allocating and freeing mem-
ory. Should not be accessed!

� HGLOBALhImageBufferB Windows memory handler. For allocating and freeing mem-
ory. Should not be accessed!

� HGLOBALhmyImageWindows memory handler. For allocating and freeing memory.
Should not be accessed!

Allo cating and Freeing Memory of myImage

int createMyImage(myImage **self, long maxWidth, long maxHeight, colorMode
mode)

� Description: Allo cates memory to a pointer of the image self of type myImage.
Afterwards an image of the maximum width long maxWidth, maximum height long
maxHeight and of the color format colorMode modecan besaved in self . The function
returns an error code.

� Usage: In the following example, memory to a color image testImage of the max.
width of 100 and the max. height of 50 is allocated.

#include <stdio.h>
#include "jpmyerror.h"
#include "jpmyimage.h"
{
int errorHandler;// error handler
myImage*testImage; // declaration of the pointer to myImagetestImage

// allocating memoryto testImage
// max. width 100, max. height 50, color image
if(NO_ERROR!= (errorHandler =

createMyImage(&testImag e, 100, 50, COLOR))){
fprintf(stderr, "Error when creating testImage.");
return errorHandler;

}
}



B.1. DOCUMENT ATION 71

int destroyMyImage(myImage *self)

� Description: Freesthe memory allocated to myImageself . The function returns an
error code.

� Usage: In the following, the memory, allocated to testImage, is freed.

#include <stdio.h>
#include "jpmyerror.h"
#include "jpmyimage.h"
{
int errorHandler;
myImage*testImage;
...

if(NO_ERROR!= (errorHandler = destroyImage(testImage)) ){
fprintf(stderr, "Error when destroying testImage.");
return errorHandler;

}
}

int myImageInfo(myImage *image, long *width, long *height, colorMode *mode)

� Description: Provides information about the created image myImageimage. Writes
values of the image width, image height and the color mode to long width , long
height , colorMode mode. The function returns an error code.

� Usage: In the following example, the width, height and color mode of testImage are
written to long testWidth , long testHeight , colorMode testMode.

#include <stdio.h>
#include "jpmyerror.h"
#include "jpmyimage.h"
{
int errorHandler;
myImage*testImage;
...

long testWidth, testHeight;
colorMode testMode;

if(NO_ERROR!= (errorHandler =
myImageInfo(testImage, &testWidth, &testHeight, &testMode))){
fprintf(stderr, "Error at myImageInfo.");
return errorHandler;

}
}
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Con verting images to/from the Victor Image Library from/to myImage

Two functions are provided to convert imagesto the format imgdes from the Victor Image
Library to myImageand vice versa.

int copyImage2MyImage(imgdes*inImage, myImage*outImage, long width, long
height, colorMode mode)

� Description: Copies an image imgdes inImage of the width width , height height
and color mode modefrom the format imgdes (Victor Image Library . Seethere for
details) to myImageoutImage. The userhas to initialize width , height and mode. The
function returns an error code.

� Usage: In the following, the color image imgdes vicImage of the width 100, height 50
is copied to myImagetestImage . Before copying, memory is allocated to testImage .

#include <stdio.h>
#include "vicdefs.h"
#include "jpmyerror.h"
#include "jpmyimage.h"
{
int errorHandler;
imgdes *vicImage;
...

myImage*testImage;

// allocating memoryto testImage
// max. width 100, max. height 50, color image
if(NO_ERROR!= (errorHandler =

createMyImage(&testImag e, 100, 50, COLOR))){
fprintf(stderr, "Error when creating testImage.");
return errorHandler;

}

// copying imgdes vicImage to testImage
if(NO_ERROR!= (errorHandler =

copyImage2MyImage(vicImage, testImage, 100, 50, COLOR))){
fprintf(stderr, "Error when copying testImage.");
return errorHandler;

}
}
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int copyMyImage2Image(myImage *inImage, imgdes *outImage, long *width, long
*height, colorMode *mode)

� Description: Copiesan imagemyImageinImage to imgdes outImage. Width, height
and color mode are written to long width , long height , colorMode mode. The func-
tion returns an error code. Pleasenote, that su�cien t memory has to be allocated to
outImage.

� Usage: In the following, the copying of the image myImagetestImage to the image
imgdes vicImage is demonstrated.
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#include <stdio.h>
#include "vicdefs.h"
#include "jpmyerror.h"
#include "jpmyimage.h"
{
int errorHandler;
myImage*testImage;
...

long tmpWidth, tmpHeight;
colorMode tmpMode;

if(NO_ERROR!= (errorHandler =
myImageInfo(testImage, &tmpWidth, &tmpHeight, &tmpMode))){
fprintf(stderr, "Error at myImageInfo");
return errorHandler;

}

// an image of Victor Image Libary has to be allocated.
// See Victor Image Libary for details
int vicBits = 8;
if(tmpMode == COLOR){

vicBits = 24;
}
imgdes vicImage;
if(NO_ERROR!= (errorHandler =

allocimage(&vicImage, tmpWidth, tmpHeight, vicBits))){
fprintf(stderr, "Error allocating memoryto vicImage.");
return errorHandler;

}

long tmpWidth, tmpHeight;
colorMode tmpMode;

if(NO_ERROR!= (errorHandler =
copyMyImage2Image(testI mage, &vicImage, &tmpWidth,

&tmpHeight, &tmpMode))){
fprintf(stderr, "Error copy image to testImage");
return errorHandler;

}
}
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Cop ying and Pasting Blo cks from/to myImage

int getBlock(myImage *srcImage, myImage*block, long index i, long index j,
long size i, long size j)

� Description: Copiesa block from myImagesrcImage to myImageblock . The upper
left corner of block in srcImage is index i , index j ). The block hasa width of size i
and a height of size j . Note that the block has to be fully in srcImage. The function
returns an error code.

� Usage: In the following, a block myImagesrcBlock of width 40 and height 20 is copied
from myImagesrcImage. The upper left corner of the block in srcImage, from which
it is taken, is at (15,10).

#include <stdio.h>
#include "jpmyerror.h"
#include "jpmyimage.h"
{
int errorHandler;
myImage*srcImage;
...

long tmpWidth, tmpHeight;
colorMode tmpMode;

if(NO_ERROR!= (errorHandler =
myImageInfo(srcImage, &tmpWidth, &tmpHeight, &tmpMode))){
fprintf(stderr, "Error at myImageInfo.");
return errorHandler;

}

myImage*srcBlock;
if(NO_ERROR!= (errorHandler =

createMyImage(&srcBlock, 40, 20, tmpMode))){
fprintf(stderr, "Error allocating for srcBlock.");
return errorHandler;

}

if(NO_ERROR!= (errorHandler =
getBlock(srcImage, srcBlock, 15, 10, 40, 20))){
fprintf(stderr, "Error copying block from srcImage.");
return errorHandler;

}
}
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int fillPatchInImage(myImage *block, myImage*destImage, long patchWidth, long
patchHeight, long seam, long destI, long destJ, int blendingTrue)

� Description: Fills myImageblock into myImagedestImage. The block consists of
a patch of a width of long patchWidth and a height of long patchHeight . It is
covered with a seamof size long seam. The upper left corner of the patch is �lled to
(destI , destJ ). If blendingTrue == TRUE, the feathering is usedto for the upper and
left seamregion. If blendingTrue == FALSE, the outer seam/2 pixels are kept from
destImage, and the other pixels are overwritten with pixels from block . This behavior
does not a�ect the pixels in the patch. Note that the function fillPatchInImage()
doesautomatically considera correct edgehandling. So only (destI , destJ ) has to be
inside of destImage. Whenever a seamor parts of the patch would exceeddestImage,
this is taken into account, and theseparts are not copied. The function returns an error
code.

� Usage: In the following, it is demonstrated, how to �ll a block myImagetestBlock ,
consisting of a patch of 25 � 25, with a seamof 5 into the image myImage*outImage .
The upper left corner of the patch is (0,0).

#include <stdio.h>
#include "jpmyerror.h"
#include "jpmyimage.h"
{
int errorHandler;
myImage*testBlock;
myImage*outImage;
...

if(NO_ERROR!= (errorHandler =
fillPatchInImage(testBlo ck, outImage, 25, 25, 5, 0, 0, TRUE))){
fprintf(stderr, "Error filling block in image.");
return errorHandler;

}
}
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B.1.5 jpisometries.h, jpisometries.cpp

int getIsometry(myImage *inBlock, myImage*outBlock, isometType isometry)

� Description: The function applies the isometry isometType isometry to the image
myImageinBlock and copiesthe result to myImageoutBlock . The imageshave to be
quadratic. The function returns an error code. The following isometriescan be applied
(in brackets equivalents to Section 4.1):

{ isometType IDENTApplies the isometry identity (0. isometry) to the block.

{ isometType REFLECT_VERTICALApplies an orthogonal re
ection about mid-vertical
axis (1. isometry) to the block.

{ isometType REFLECT_HORIZONTALApplies an orthogonal re
ection about mid-hori-
zontal axis (2. isometry) to the block.

{ isometType REFLECT_1ST_DIAGONALApplies an orthogonal re
ection about �rst
diagonal of block (3. isometry).

{ isometType REFLECT_2ND_DIAGONALApplies an orthogonal re
ection about second
diagonal of block (4. isometry).

{ isometType ROTATE90Applies a rotation around center of block, through +90 � to
the block (5. isometry).

{ isometType ROTATE180Applies a rotation around center of block, through +180 �

to the block (6. isometry).

{ isometType ROTATE270Applies a rotation around center of block, through -90 � to
the block (7. isometry).

� Usage: The following example demonstrates the allocation of su�cien t memory to
myImagerotatedTestBlock , and afterwards the application of a rotation around the
center of the block through +180 � to myImagetestBlock . The result is copied to
myImagerotatedTestBlock .
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#include <stdio.h>
#include "jpmyerror.h"
#include "jpisometries.h"
#include "jpmyimage.h"
{
int errorHandler;
myImage*testBlock;
...

long tmpWidth, tmpHeight;
colorMode tmpMode;

if(NO_ERROR!= (errorHandler =
myImageInfo(testBlock, &tmpWidth, &tmpHeight, &tmpMode))){
fprintf(stderr, "Error at myImageInfo.");
return errorHandler;

}

myImage*rotatedTestBlock;

if(NO_ERROR!= (errorHandler =
createMyImage(&rotatedTe stBl ock, tmpWidth, tmpHeight, tmpMode))){
fprintf(stderr, "Error allocating for rotatedTestBlock.");
return errorHandler;

}

if(NO_ERROR!= (errorHandler =
getIsometry(testBlock, rotatedTestBlock, ROTATE180))){
fprintf(stderr, "Error applying isometry to testBlock.");
return errorHandler;

}
}
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B.1.6 jp�ndblo cks.h, jp�ndblo cks.cpp

Functions to Search the Next Sampled Blo ck

int findBestBlock(databest *varbest, databestOut *outbest, int extSwitch);

� Description: The function searchesthe next block, which has to be sampledfor patch
basedtexture synthesis. Input parametersare given via databest varbest , output pa-
rametersare written to databestOut outbest . int extSwitch signalsto the function,
if the next block has to be placed at the upper border of the output image (extSwitch
= 1), at the left border (extSwitch = 2) or at another place (extSwitch = 0). In the
following, the structures databest and databestOut are explained:

{ struct databest

struct databest{
findBestMode opMode;
findBestBound opBound;
float epsilon;
long numEvalBlocks;
long seam;
long patch;
long numBlocks;
int isometries_180_true;
int isometries_90_true;
int isometriesFactor;
myImage*rightColumn;
myImage*lowerRow;
float alpha;
float *error;
float *sort_error;
myImage*origImage;
myImage*inputSegmentation;
myImage*outputSegmentation;
myImage*origBlock;
myImage*mutantBlock;
myImage*schemeBlock1;
myImage*schemeBlock2;
myImage*schemeBlock3;
regions findRegion;
regions *classifiedBlocks;
int normValue;
int discardBlackBlockTrue;
int avoidRepetitionsTrue;
imageEvaluation *origImageEval;

};
� findBestMode opMode: Two operation modescanbeapplied to findBestBlock .

findBestMode MODETEXTUREPATCHapplies the mode for patch basedtexture
synthesis, without segmenting the in- and output images.
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findBestMode MODESEGMENTSYNTHappliesa mode, where the in- and output
image can be segmented with usageof two additional segmentation schemes
(cp. Section5.3). Expectseither MODETEXTUREPATCHor MODESEGMENTSYNTH.

� findBestBound opBound: Two di�eren t distance tolerancescan be applied to
the patch based texture synthesis. findBestBound BOUNDEPSILONapplies
the distance tolerance dmax; � , with a to be de�ned parameter � , whereas
findBestBound BOUNDNUMBERapplies the distance tolerance dmax; n, with
a to be de�ned parameter n (cp. Section 3.3.4). Expects findBestBound
BOUNDEPSILONor findBestBound BOUNDNUMBER.

� float epsilon de�nes the � of the distance tolerance dmax; � . Set epsilon =
0, if opBound != BOUNDEPSILON. Expects a positive 
oat value.

� long numEvalBlocks de�nes the number n of the distance tolerance dmax; n.
SetnumEvalBlocks = 0, if opBound != BOUNDNUMBER. Expectsa long integer
value > 0.

� long seamWidth of the seam. Correspondents with we. Expects a long
integer value > 0.

� long patch Width, height of a quadratic patch. Correspondents with wb.
Expects a long integer value > 0.

� long numBlocksNumber of all valid blocks for synthesis in the input sample.
It can be calculated by (inputW idth � patch� 2� seam+ 1) � (inputH eight �
patch � 2 � seam + 1), where inputW idth and inputH eight are width and
height of the input sample. Expects a long integer value > 0.

� int isometries 180 true If isometries 180 true == TRUE, isometries of
the 1st category are applied (Section 4.1). The number of the additional
applied isometries is stored in NUMISOMETRIES180. Expects TRUEor FALSE.

� int isometries 90 true If isometries 90 true == TRUE, isometries of the
2nd category are applied (Section 4.1). The number of the additional applied
isometries is stored in NUMISOMETRIES90. Expects TRUEor FALSE.

� int isometriesFactor Has to be set to the total number of applied isome-
tries. It is minimum 1 (becauseisometry Identity is always applied). If
isometries 180 true == TRUE, isometriesFactor += NUMISOMETRIES180.
If isometries 90 true == TRUE, isometriesFactor += NUMISOMETRIES90.
Expects an integer value > 0.

� float *error Pointer to an array of 
oat with isometr iesF actor� numB locks
entries. The memory hasto beallocated beforecalling the function. The array
contains the distancesd of all blocks.

� float *sort_error Pointer to an array of 
oat with isometr iesF actor �
numB locks entries. The memory has to be allocated beforecalling the func-
tion. The array contains the sorted distancesof all blocks.

� float alpha Factor � for synthesis of segmentations (Chapter 5.3). Only
valid, if opMode== MODESEGMENTSYNTH, else set to alpha = 0. Expects a

oat value � 0.

� myImage*rightColumn Pointer to myImage, contains the imagepart, that the
left part of the block seamis comparedwith(Figure B.1).
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Figure B.1: The two marked seam parts are copied separately to the images myImage
rightColumn (red), myImagelowerRow(blue), for distance calculation.

� myImage*lowerRow Pointer to myImage, contains the image part, that the
upper part of the block seamis comparedwith (Figure B.1).

� myImage*origImage Pointer to myImage, containing the input sample.
� myImage*inputSegmentation Pointer to myImage, containing the segmenta-

tion of the input sample. Only necessary, if opMode== MODESEGMENTSYNTH,
else set to NULL. The segmentation has to consist of two colors, black and
white. The color mode has to be gray scale.

� myImage*outputSegmentation Pointer to myImage, containing the segmenta-
tion of the output texture. Only necessary, if opMode== MODESEGMENTSYNTH,
elseNULL. The segmentation hasto consistof two colors,black and white. The
color mode has to be gray scale.

� myImage*origBlock Pointer to myImage. Enough memory for one block
(patch +2seam)� (patch + 2seam)has to be allocated. The color mode has to
be identical to the color mode of the input sample.

� myImage*mutantBlock Pointer to myImage. Enough memory for one block
(patch +2seam)� (patch + 2seam)has to be allocated. The color mode has to
be identical to the color mode of the input sample.

� myImage*schemeBlock1 Pointer to myImage. Enough memory for one block
(patch +2seam)� (patch + 2seam)has to be allocated. The color mode has
to be identical to the color mode of the input segmentation. Only necessaryif
opMode== MODESEGMENTSYNTH, elseNULL.

� myImage*schemeBlock2 Pointer to myImage. Enough memory for one block
(patch +2seam)� (patch + 2seam)has to be allocated. The color mode has
to be identical to the color mode of the input segmentation. Only necessaryif
opMode== MODESEGMENTSYNTH, elseNULL.

� myImage*schemeBlock3 Pointer to myImage. Enough memory for one block
(patch + 2seam) � (patch + 2seam) has to be allocated. The color mode has
to be identical to the color mode of the input segmentation. Only necessaryif
opMode== MODESEGMENTSYNTH, elseNULL.

� regions findRegion Has to be set to the region, the next synthesizedblock
should belong to. Valid regionsare:

� REGION_1Block is located totally in the region of the input segmentation
marked white.
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� REGION_2Block is located totally in the region of the input segmentation
marked black.

� BOTH_REGIONSBlock is partially located in both regions.
Only necessaryif opMode== MODESEGMENTSYNTH, elseset to 0.

� regions *classifiedBlocks Has to contain a classi�cation of all numBlocks
blocks of the input sample, to which region they belong. Only necessaryif
opMode== MODESEGMENTSYNTH, elseset to NULL.

� int normValue Has to contain a value for a scaling of the distance between
the color schemes.Shouldbe the di�erence betweenthe two colorsof the input
segmentation. Only necessaryif opMode== MODESEGMENTSYNTH, elseset to
0.

� int discardBlackBlockTrue Set this TRUEto discard all blocks containing
black pixels for texture synthesis (Section 5.2). Expects TRUEor FALSE.

� avoidRepetitionsTrue Set this TRUEto try to avoid repetitions of blocks
(Section 4.2). Expects TRUEor FALSE.

� imageEvaluation *origImageEval Pointer to imageEvaluation . Is created
by int createImageEvaluation() . Only necessary, if avoidRepetitionTrue
== TRUE, elseset to NULL.

{ struct databestOut

struct databestOut{
long i_opt;
long j_opt;
isometType isometriaOpt;
long badBlockTrue;

};
� long i_opt i-coordinate of the chosenpatch.
� long j_opt j-coordinate of the chosenpatch.
� isometryOpt Isometry of the chosenblock.
� badBlockTrue TRUE, if no block matchesthe � distancetolerance,and the best

block has to be chosen,elseFALSE. Only valid if using the � bound (opBound
== BOUNDEPSILON).

The function returns an error code.

� Usage: In the following example, the usageof findBestBlock is demonstrated. We
assumea correct initialized varbest . A detailed examplehow to initialize varbest can
be found in texture patch() (jptexturepatc h.cpp).
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#include <stdio.h>
#include "jpmyimage.h"
#include "jpmyerror.h"
#include "jpfindbest.h"
{
int errorHandler;
struct databest *varbest;
struct databestOut *outbest;
int extSwitch;
...

if(NO_ERROR!= (errorHandler =
findBestBlock(varbest, outbest, extSwitch))){
fprintf(stderr, "Error at findBestBlock.")
return errorHandler;

}

long i_opt = outbest->i_opt;
long j_opt = outbest->j_opt;
int isometryOpt = outbest->isometryOpt;
int badBlockTrue = outbest->badBlockTrue;
}



84 APPENDIX B. TECHNICAL DOCUMENT ATION OF THE IMPLEMENTED SOFTWARE

int pyramidFindBestBlock(hPy rami dFi ndBestBl ock *self, databest *varbest,
databestOut *outbest, int extSwitch)

� Description: The function searchesthe next block, which has to be sampledby patch
basedtexture synthesis. In contrast to findBestBlock , this is done with application
of a multiresolution pyramid. Input parametersare given via databest varbest , out-
put parameters are written to databestOut outbest . int extSwitch signals to the
function, if the next block has to be placed at the upper border of the output image
(extSwitch = 1), at the left border (extSwitch = 2) or at another place(extSwitch =
0). The structures databest and outbest are explained above, and have to be applied
in the samemanner. The handler hPyramidFindBestBlock has to be initialized before
the �rst usageof pyramidFindBestBlock and destroyed after the last usage.This canbe
done with the functions int createPyramidFindBestBloc k(h PyramidFind BestBloc k
**self) and int destroyPyramidFindBestBl ock( hPyramidFin dBestBl ock *self) .
The function returns an error code.

� Usage: In the following example,the usageof pyramidFindBestBlock is demonstrated.
We assumea correct initialized varbest . First the handler hPyramidFindBestBlock is
initialized. The function is called and �nally the handler destroyed.
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#include <stdio.h>
#include "jpmyerror.h"
#include "jpmyimage.h"
#include "jpfindbest.h"
{
int errorHandler;
struct databest *varbest;
struct databestOut *outbest;
int extSwitch;
...

hPyramidFindBestBlock *hPyramidFind;

if(NO_ERROR!= (errorHandler =
createPyramidFindBestBlo ck(&hPyrami dFin d)) ){
fprintf(stderr, "Unable to create hPyramidFind");
return errorHandler;

}

if(NO_ERROR!= (errorHandler =
pyramidFindBestBlock(hPy rami dFi nd, varbest, outbest, extSwitch))){
fprintf(stderr, "Error at pyramidFindBestBlock.")
return errorHandler;

}

long i_opt = outbest->i_opt;
long j_opt = outbest->j_opt;
int isometryOpt = outbest->isometryOpt;
int badBlockTrue = outbest->badBlockTrue;

if(NO_ERROR!= (errorHandler =
destroyPyramidFindBestBl ock( hPyrami dFin d)) ){
fprintf(stderr, "Unable to destroy hPyramidFind");
return errorHandler;

}
}
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Functions to Evaluate Blo ck Rep etitions

The following functions werewritten with respect to an evaluation, how often a certain block
is sampled(Section 4.2).

int createImageEvaluation(im ageEval uati on **self, long width, long height)

� Description: Creates imageEvaluation self for an input sample of width long
width and height long height . The function returns an error code.

� Usage: In the following, for the imagemyImagetestImage an appropriate imageeval-
uation structure imageEvaluation testEvaluation is created. The structure consists
of a counter for each block, which is increasedby each repetition of this block.

#include <stdio.h>
#include "jpmyerror.h"
#include "jpmyimage.h"
#include "jpfindbest.h"
{
int errorHandler;
myImage*testImage;
...

long tmpWidth, tmpHeight;
colorMode tmpMode;

if(NO_ERROR!= (errorHandler =
myImageInfo(testImage, &tmpWidth, &tmpHeight, &tmpMode))){
fprintf(stderr, "Error at myImageInfo.");
return errorHandler;

}

imageEvaluation *testEvaluation;

if(NO_ERROR!= (errorHandler =
createImageEvaluation(&t estEval uati on, tmpWidth, tmpHeight))){
fprintf(stderr, "Unable to createImageEvaluation." );
return errorHandler;

}
}
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int destroyImageEvaluation(i mageEvaluat ion *self)

� Description: Destroys a created structure self of type imageEvaluation . The func-
tion returns an error code.

� Usage: In the following, the structure imageEvaluation testEvaluation is destroyed.

#include <stdio.h>
#include "jpmyerror.h"
#include "jpfindbest.h"
{
int errorHandler;
imageEvaluation *testEvaluation;
...

if(NO_ERROR!= (errorHandler = destroyImageEvaluation(t est Eval uati on) )){
fprintf(stderr, "Unable to destroy ImageEvaluation.");
return errorHandler;

}
}

int imageEvaluationInfo(imag eEvalua tion *inImageEvaluation, long *width, long
*height)

� Description: Writes width and height of imageEvaluation inImageEvaluation to
long *width , long *height . The function returns an error code.

� Usage: In the following, the width and height of the initialized imageEvaluation
testEvaluation is written to long tmpWidth, long tmpHeight .

#include <stdio.h>
#include "jpmyerror.h"
#include "jpfindbest.h"
{
int errorHandler;
imageEvaluation *testEvaluation;
...

long tmpWidth, tmpHeight;

if(NO_ERROR!= (errorHandler =
imageEvaluationInfo(test Eval uat ion, &tmpWidth, &tmpHeight))){
fprintf(stderr, "Unable to info about testEvaluation.");
return errorHandler;

}
}
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int writeImageEvaluation(ima geEvalu atio n *self, long i, long j, long
patchWidth, long patchHeight, long seam)

� Description: Writes the evaluation entry for the patch (i,j) with patch width long
patchWidth , patchHeight long patchHeight and seamlong seam. The patch (i,j) is
marked and all patch + 2 � seam� 1 neighbored blocks. This is done by increasingthe
counter for each block by one. The function returns an error code.

� Usage: In the following, the marking of a block with patch at (100,200)is demonstrated.
We assumeimageEvaluation testEvaluation asalready initialized. Patch width and
height are assumedas to be patch , seamas seam.

#include <stdio.h>
#include "jpmyerror.h"
#include "jpfindbest.h"
{
int errorHandler;
imageEvaluation *testEvaluation;
long patch, seam;
...

if(NO_ERROR!= (errorHandler =
writeImageEvaluation(tes tEvalua tion , 100, 200,

patch, patch, seam))){
fprintf(stderr, "Unable to write image evaluation.");
return errorHandler;

}
}
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in t getImageEv aluation(imageEv aluation *self, long i, long j, 
oat *ev aluation)

� Description: Writes out the image evaluation, i.e. how often a block (i,j) is marked
as repeated, to evaluation . The function returns an error code.

� Usage: We demonstrate in the following, how to get the imageevaluation for the patch
(100,200) of the structure imageEvaluation testEvaluation . The value is saved in
float tmpRepeated.

#include <stdio.h>
#include "jpmyerror.h"
#include "jpfindbest.h"
{
int errorHandler;
imageEvaluation *testEvaluation;
...

float tmpRepeated;
if(NO_ERROR!= (errorHandler =

getImageEvaluation(testE valu ati on, 100, 200, &tmpRepeated))){
fprintf(stderr, "Unable to get image evaluation.");
return errorHandler;

}
}



90 APPENDIX B. TECHNICAL DOCUMENT ATION OF THE IMPLEMENTED SOFTWARE

int reduceImageEvaluation(im ageEval uati on *inImageEvaluation, imageEvaluation
*outImageEvaluation, int factor)

� Description: SubsamplesimageEvaluation *inImageEvaluation by factor and copies
the result to imageEvaluation *outImageEvaluation . The function returns an error
code.

� Usage: In the following, imageEvaluation testEvaluation is subsampled by the
factor 2 and copied to imageEvaluation subTestEvaluation .

#include <stdio.h>
#include "jpmyerror.h"
#include "jpfindbest.h"
{
int errorHandler;
imageEvaluation *testEvaluation;
...

imageEvaluation *subTestEvaluation;
long tmpWidth, tmpHeight;

if(NO_ERROR!= (errorHandler =
imageEvaluationInfo(test Eval uat ion, &tmpWidth, &tmpHeight))){
fprintf(stderr, "Error at imageEvaluationInfo()");
return errorHandler;

}

if(NO_ERROR!= (errorHandler =
createImageEvaluation(&s ubTestEvalu atio n, tmpWidth/2,

tmpHeight/2))){
fprintf(stderr, "Unable to createImageEvaluation." );
return errorHandler;

}

if(NO_ERROR!= (errorHandler =
reduceImageEvaluation(te stEv alu atio n, subTestEvaluation, 2))){
fprintf(stderr, "Unable to reduce image evaluation.");
return errorHandler;

}
}
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int getBlockImageEvaluation( imageEvalua tion *inImageEvaluation,
imageEvaluation *outImageEvaluation, long startI, long startJ, long width,
long height)

� Description: Copiesa region of imageEvaluation *inImageEvaluation and copiesit
to imageEvaluation *outImageEvaluation . The region is characterized by its upper,
left corner (startI, startJ) and its width long width and height long height . The
function returns an error code.

� Usage: In the following example,a region, beginning at (0,0) of size50� 50 is copied
from imageEvaluation testEvaluation to imageEvaluation blockTestEvaluation .

#include <stdio.h>
#include "jpmyerror.h"
#include "jpfindbest.h"
{
int errorHandler;
imageEvaluation *testEvaluation;
...

imageEvaluation *blockTestEvaluation;

if(NO_ERROR!= (errorHandler =
createImageEvaluation(&b lock TestEvaluat ion , 50, 50))){
fprintf(stderr, "Unable to createImageEvaluation." );
return errorHandler;

}

if(NO_ERROR!= (errorHandler =
getBlockImageEvaluation( test Evaluat ion, blockTestEvaluation,

0, 0, 50, 50))){
fprintf(stderr, "Unable to get block from testImageEvaluation.");
return errorHandler;

}
}

Other

int blockContainsColor(myIma ge *block, unsigned char colorValueR, unsigned
char colorValueG, unsigned colorValueB, int *trueFalse)

� Description: Writes TRUEto int trueFalse , if the myImageblock contains the color
speci�ed with its RGB components (colorValueR , colorValueG , colorValueB ), else
FALSE. If the image is gray scale, only the R component is evaluated. The function
returns an error value.

� Usage: In the following example is demonstrated, how to prove, if the image myImage
testImage contains a black (0,0,0) pixel. The result is written to int containsBlack .
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#include <stdio.h>
#include "jpmyerror.h"
#include "jpmyimage.h"
#include "jpfindblocks.h"
{
int errorHandler;
myImage*testImage;
...

int containsBlack;
if(NO_ERROR!= (errorHandler =

blockConainsColor(testIm age, 0, 0, 0, &containsBlack))){
fprintf(stderr, "Error at blockContainsColor()");
return errorHandler;

}
}
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B.1.7 jp classifyBlo cks.h, jp classifyBlo cks.cpp

int classifyBlocks(myImage *inImage, regions *classifiedBlocks, long
maxClassifiedBlocks, long patchWidth, long patchHeight, long seam, unsigned
char color1, unsigned char color2)

� Description: Analyzes all valid blocks of myImage*inImage , which has to be gray
level (colorMode BLACKWHITE) and consist of 2 gray values unsigned char color1
and unsigned char color2 , what region they belong to. The following regions are
de�ned:

{ REGION_1Block is located totally in the region marked with color1.

{ REGION_2Block is located totally in the region marked with color2.

{ BOTH_REGIONSBlock is partially located in both regions.

The result is written to regions *classifiedBlocks , an array of regions with
maxClassifiedBlocks entries. The blocks consist of a patch of width patchWidth ,
height patchHeight and surrounding seamof size seam. Only blocks, which are com-
pletely in inImage are evaluated, and the result is written in raster scan order to
classifiedBlocks . I.e. the �rst evaluated block is (seam, seam), where (x,y) de-
�nes the upper left corner of the patch of a block placed in inImage . The function
returns an error code.

� Usage: In the following example, the imagemyImagetestImage , consistingof the two
gray values0 and 255 (black and white) is evaluated. The result is written to regions
*testRegions . Patch width and height are 25, seam5.
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#include <stdio.h>
#include <stdlib.h>
#include "jpmyerror.h"
#include "jpmyimage.h"
#include "jpclassifyBlocks.h"
{
int errorHandler;
myImage*testImage;
long patchWidth = 25;
long patchHeight = 25;
long seam = 5;
...

long tmpWidth, tmpHeight;
colorMode tmpMode;
if(NO_ERROR!= (errorHandler =

myImageInfo(testImage, &tmpWidth, &tmpHeight, &tmpMode))){
fprintf(stderr, "Error at myImageInfo.");
return errorHandler;

}

long blocksHorizontal = tmpWidth - patchWidth - 2*seam + 1;
long blocksVertical = tmpHeight - patchHeight - 2*seam + 1;
long maxBlocks = blocksHorizontal*blocks Vert ica l;

// either maxBlocks == 0 or < 0
// in both cases testImage too small for patch and seam
if(maxBlocks < 1){

fprintf(stderr, "maxBlocks < 1");
return BAD_RANGE;

}

regions *testRegions;
if(NULL == (testRegions = (regions)calloc(maxBlocks , sizeof(regions)))){

fprintf(stderr, "Unable to calloc for testRegions.");
return BAD_MEM;

}

if(NO_ERROR!= (errorHandler =
classifyBlocks(testImage , testRegions, maxBlocks, patchWidth,

patchHeight, seam, 0, 255))){
fprintf(stderr, "Unable to classify testImage.");
return errorHandler;

}
}
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B.1.8 jpm y�lter.h jpm y�lter.cpp

int filterAndSubsampleImage( imgdes *inImage, imgdes *outImage, filtertype
FILTER)

� Description: Applies a �lter and subsamplesthe imageimgdes *inImage by the factor
2. Finally the result is copiedto imgdes *outImage . The following filtertype can be
applied to the function:

{ NO_FILTERNo �lter is applied. The image is only subsampled.

{ MEAN_FILTERA mean �lter with the mask of 3 � 3 is applied to the image.

The function returns an error code.

� Usage: In the following, the �ltering and subsampling of imgdes testImage is pre-
sented. testImage is �ltered with a mean �lter. The result is subsampledby the factor
2 and copied to imgdes subsampledTestImage.

#include <stdio.h>
#include "vicdefs.h"
#include "myError.h"
#include "jpmyfilter.h"
{
int errorHandler;
imgdes *testImage;
...

// get parameters of testImage
int tmpBpp, tmpWidth, tmpHeight;
CalcularParametros(testIm age, &tmpWidth, &tmpHeight, &tmpBpps);

imgdes subsampledTestImage;
if(NO_ERROR!= (errorHandler =

allocimage(&subsampledTe stIm age, tmpWidth/2, tmpHeight/2,
tmpBpps))){

fprintf(stderr, "Error alloc for subsampledTestImage.");
return errorHandler;

}

if(NO_ERROR!= (errorHandler =
filterAndSubsampleImage( &testIm age, &subsampledTestImage,

MEAN_FILTER))){
fprintf(stderr, "Unable to filter and subsample

testImage to subsampledTestImage.")
return errorHandler;

}
}
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B.1.9 jpm yerror.h, jpm yerror.cpp

The following functions provide an easypossibility to print out error and info messages.It
wasimplemented with respect to a later easierportabilit y of the functions. All in this chapter
introduced functions useinternal thesethesetwo functions to print out messages.

void myErrorMessage(char buffer[MAXERRORMSG])

� Description: Prints out the error messagecontained in char buffer[MAXERRORMSG].
MAXERRORMSGis de�ned in jpmyerror.h. The function returns void.

void myInfoMessage(char buffer[MAXERRORMSG])

� Description: Prints out the info messagecontained in char buffer[MAXERRORMSG].
MAXERRORMSGis de�ned in jpmyerror.h. The function returns void.

B.1.10 jpm yrand.h, jpm yrand.cpp

long myRand(long n)

� Description: The function returns a random variable of long in the range of [0;n[.


