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Chapter 1

In tro duction

The upcoming of modern, powerful computers has enabled new possibilities for graphical
work. But naturally it has also entailed new problems. Great advanceshave beenmade in
creating graphical objects arti cially . Surfacesof such computated objects are often lled

with texture mapping. But a problem ariseswhen the surfaceis larger than the available
texture. The textures can not, in general,simply be tiled, becauseboundarieswould become
visible. And what if the available texture contains undesiredparts? The generation of a new
texture, larger and only with desiredparts, would solve this problem.

Arti cial generationsof this kind have to be done with texture synthesis. But there are
other application areasfor texture synthesis. It can not only be applied to create textures
without undesiredregions,but alsoto replacetheseparts directly within the giventexture [17].
In the samedirection goesthe approad to correct transmission errors, e.g. causedby padet
basedtransmissionsof images. The lossof single padets could cause(without error protection
at network side) erroneousparts in the received image. These parts could be reconstructed
via texture synthesis [16]. Other approadeswere made to usetexture synthesis for digital
painting [12]. Also an application in image compressioncould be imagined. Textures within
the imageswould not have to be transmitted, but could be generated from a very small
texture sample.

But as many applications in graphical processing,texture synthesis also su ers from its
high computational cost. Only with recert computers it is possibleto solve problems of
texture synthesis, asit can be seenin the further work.

1.1 De nitions

1.1.1 Texture

Although it was already talked about, until now no de nition of the term texture was given.
There are di erent approadesto this de nition. In somepublications the statemert can be
found that there doesnot exist a clear de nition of texture (e.g. [7], p. 414). But there has
to be a distinction from any surface pattern.

A basicfeature of a texture is the periodic, aperiodic or random repetition of certain small,
elemertary patterns. These patterns, whosethe texture consist of, are called texels Natural
textures consistnormally of random texel placemerts, whereasperiodic or deterministic texel
placemerns often can be found in arti cial textures ([11], p. 394). With this knowledge, a
texture can be described only with thesetexels and rules for their repetition and placemert.

1



2 CHAPTER 1. INTR ODUCTION

1.1.2 Texture Synthesis

Texture synthesis creates a new, generally not deterministic, texture from a given, nite
texture sample. The following demandsare made on result and process(cp. [19], p. 6):

Visual Fidelit y. Visual delit y describesthe quality of the created texture. Therefore we
expect certain demandsto beful lled. First of all from the output texture a similarity to
the given texture sampleis expected. The producedtexture should have the samelook
as the input sample,it should cortain the samestructure. Texelsshould be combined
in a comparableway. Further on it is expected from the producedtexture not to look
articial. Remarkable repetitions have to be avoided, structures should be corntinued
with natural transitions.

E ectiv eness. The demandon the synthesis processis to be e cien t in time and resources.
It should have a small computational e ort and uselittle memory.

1.2 General Approac hes to Texture Synthesis

As already described in the de nition of the term texture, it consistof a certain placemern
of the basictexture elemerts. Texture synthesishasto synthesizethesetexelsin appearance,
repetition and placemern astrue aspossibleto the original. For this primarily a tting model
hasto be found, which gives a clearer characterization of the texture. There are two main
categoriesof models, which can be found in the literature ([1], p. 108 et seqq.).

Statistical Mo dels. The statistical modelstry to characterizethe texture globally, whereby
statistical properties of the spatial distribution of gray levels are used as texture de-
scriptors. Thereby the description is only dependert on the statistical properties of
the points, without explicit usageof texture elemerns like texels or subregions.In this
category fall e.g. time series madels ([1], p. 108) and Markov Random Field models
([1], p. 108seqq.,[4], p.- 45seqq.).

Structural Mo dels. The structural modelsregard a texture as an arrangemer of a set of
sub patterns, positioned with certain placemer rules. This is cortinued recursively, so
that the sub pattern themselhes are again made of sub pattern, positioned according
to certain placemen rules. With this recursive approad the hierarchical structure of
natural scenesshould be captured. Although a very reasonableapproad, until today
very little e ort hasbeendewoted to this approad.

With the help of one of these models nally a new texture has to be synthesized. Great
advancesin synthesizing textures have been made with the statistical models. Above all,
very interesting papers have been published over the last yearsin the eld of the Markov
Random Field models[5], [6], [13], [19], [20]. In the following work we follow this approad.

1.3 Problem Form ulation

As already mertioned, many di erent texture typeswith di erent characterization of the texel
placemen can be found. Goal of this work wasto adapt texture synthesis using the Markov
Random Field, i.e. pixel and patch basedtexture synthesis, to highly stochastic textures.
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Textures like this can be found in the nature, e.g. textures of stone, ground, water, wood,
etc.. Whenewer necessaryfor comparisonto other approacesor for demonstration purpose,
the limitation to natural textures is broken. Demand on the resulting algorithm was a high
e ectivenessand a high visual delit y. The algorithm should be implemented in C++.

In the last few yearsgreat advanceshave beenmade with patch basedtexture synthesis.
Our main attention liesthereforein this approad, becauset producestextures of a high visual
quality with a comparative small computational e ort. Newerthelessalsoits predecessopixel
basedtexture synthesis should be preseried and the results compared.

1.4 Pro ceeding

In the following, primarily pixel basedtexture synthesis is preseried (Chapter 2). Basing
on this, in Chapter 3 patch basedtexture synthesis is introduced. Its free parameters are
determined and the results are comparedto the pixel basedmethod. Propositionsto enhance
visual quality and computational costand its e ect to the synthesizedtexture are made and
discussedin Chapter 4. Finally, Chapter 5 preseris modi ed applications of the enhanced
patch basedtexture synthesis algorithm.

1.5 Conventions

As far as not mentioned otherwise, the following corvertions are made:
All hereusedlengths are in pixels.

All here preserted imagesare in color, 24 bit/pixel. Synthesizedimageshave the same
color scaleas their input samples.

All herepreseried results were producedwith our implementation of the hereintro duced
algorithms. Examplestakenfrom other sourceare marked. The implemertation is based
on an image processingsoftware, dewveloped by the Universidad Politecnicade Valencia
for Microsoft Windows computers.

Measuredtimes were produced on a middle classdesktop computer with an Intel Pen-
tium 4, 1.70GHz CPU and 256 MBytes RAM with Microsoft Windows XP Professional.

All measuredtimes are only published exemplarily for demonstration purpose.
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Chapter 2

Pixel Based Texture Synthesis

In this chapter various pixel basedsynthesis algorithms are preseried. Seweral papers have
been published since 1999, e.g. papers from Efros and Leung [6] and Wei and Levoy [20].
They both follow in generalthe sameapproad, but with di erent implementations. For that
we treat them asfar aspossiblecommonly. Whenewer di erences appear, theseare mentioned
explicitly. In the beginning the theoretical motivation of the algorithms is presened. It is
followed by an approad to the practical implementation, in whosecortext also open param-
eters are discussed. The chapter endswith a preseration of someresults. A more detailed
presenation of results is not in the aim of this paper, referenceis made to [6] and [20]. A
detailed discussionof the resultsin comparisonwith the patch basedalgorithms can be found
in Chapter 3.

2.1 Theoretical Approac h

In the pixel based synthesis the texture is modeled as a Markov Random Field (MRF),
assumingthat the brightnessvalues of a pixel are highly correlated to the brightnessvalues
of its spatial neighbors, but independert on the rest of the image [6]. The neighborhood is
modeledasa window around that pixel, with sizeand shape of the window asfree parameters.

In the following, let | beanimagethat is synthesized. Let | ¢4 beanin nite texture, from
which pixels are sampled. Further let p 2 | beapixel andw(p) | beaneighborhood around
p. The approad consistsin estimating all sourcesof pin | ¢5. This is doneby consideringthe
stochastic dependenciesn the MRF on the basisof comparing the pixel neighborhoods. From
the set of pixels, which cortains all supposedsourcesof p in | rea, the pixel p°2 | ea is nally
sampledrandomly to | sample. The estimation is doneby calculating the conditional probability
distribution function (pdf) P(pjw(p)) in | ea, Which can be approximated by the histogram
of the set ( p) = Tp°2 I cajd(Wp9; w(p)) = 0g, wherewYp% I ea is the neighborhood of
p%in |,ea and d(wy; w») is an appropriate distance betweentwo neighborhoods wy; wo.

In the real case,only a nite texture sample | sampie | real IS available. |eq there-
fore hasto be substituted by |sampe. In this caseit is possible,that no appropriate neigh-
borhood can be found (( p) = fg), becauseno distance d = 0 exists. For this reason,
in the following it is not sampled from the pdf any longer, but from its approximation

) = 1P° 2 1sampleid(WAPY; W(p)) < dmaxd, where WY{p9  Isample is the neighborhood
of pYin I sample, @nd dmax iS an appropriate distance tolerance (Figure 2.1).

5



6 CHAPTER 2. PIXEL BASED TEXTURE SYNTHESIS

() (b)

Figure 2.1: Overview pixel seard process.Given a texture input sample (a) and an output
image (b), in which one pixel (x) is synthesized. From all neighborhoods, which match the
criterion 9 (painted in the input sample), one is randomly selected(red), and the pixel x
copiedin the output image.

2.2 Free Parameters

In the theoretical approad from Section 2.1, someparametersremain undetermined. In the
following these parametersare determined.

2.2.1 Neigh borho od w(p) and Pro cessing

Sizeand shape of the neighborhood w(p) are the main parameters,that determine the quality
of the synthesizedtexture. The sizeshouldbe onthe scaleof the largestregular structure, that

should be synthesized,to catch su cien tly the stochastic constraints of the texture. Its shape
is strongly related with the processingof the synthesis process,becauset is recommendedto

use only already known pixels as neighborhood (causality). In the following, we summarize
choice for sizeand shape madein [6] and [20].

Efros et al. [6] initialize the output texture with a 3 3 patch (seed), randomly taken
from the input sample. Processingis donein layers outward from the already synthesized
pixels and/or from the seed. The neighborhood is modeled as a square window. To match
the causality criterion, only already processedpixels within this window are consideredfor
the distance calculation (Figure 2.2).

Another approad is usedby Wei et al. [20]. First, the output imageis totally initialized
with white noise. Then the output image is processedin raster scan order (from top to
bottom, left to right). For the processinga L-shaped neighborhood is used, which ensuresin
generalcausality, apart from the edgeregions. Becauseof the initialization with white noise,
the neighborhood cortains in the beginning noise,which a ects the randomnessof the output
texture. Edgesare handled in the following manner. In | sampie Only those neighborhoods wo
are considered,which are completely inside | sampie. TO guarantee causality and tileability of
the output imagel, it is regardedtoroidally. As soon asthe neighborhood w(p) exceedd , it
is expandedtoroidally (Figure 2.3).
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We } :#: p

@) (b) ()

Figure 2.2: Pixel basedsynthesisaccordingto Efros et al. [6]. (a) Pixel p with neighborhood
w(p) of sizewe W (in this example we = 5), formed as squarewindow. (b) The output
image | is initialized with a seedof 3 3 pixels. Afterwards the synthesis is started. (c)
The output texture is grown in layers from the seed. Only the yellow marked regions of the
neighborhood are usedfor the distance calculation.

We

heLHH 0
(@)

(©)

Figure 2.3: Pixel basedsynthesis accordingto Wei et al. [20]. (a) Pixel p with Neighborhood
w(p), We = 5/he = 3. (b) Synthesizing a middle pixel. (c) Start of synthesis process. To
guarantee causality and tileabilit y, the completely with noiseinitialized image| is expanded
toroidally. Only the noise in the last two rows and columns is used, all other pixels are
overwritten in the following synthesis processbeforethey are used. For clarity, unused noise
pixels are painted black.
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2.2.2 Distance d and Distance Tolerance dmay

To obtain useful results, a reasonabledistance d and a distance tolerance dmax have to be
found. In [6] a normalized L, norm is usedto measurethe di erence:

x
d=A 1 W w)Ewl2wlw 2 w;
k=1

where A is the number of processedpixels and w® and w are two, in sizeand shape identical,
neighborhoods. Normalization is doneto compensatethe di erent numbers of pixels usedfor
the distance calculation during the synthesis of the whole texture. Further on, to give the
pixels near p a higher weight than the outer pixels, d is setto d = d®° G, where G is a two-
dimensional Gaussiankernel. The selectionis done with a variation of the nearestneighbor
technique:

Omax = (L + )d(W(p); Whest);

where Wpest = argmin,,od(we w(p));w®  lsampie. In [6], is setto = 0:1. We obtain a
resulting
) = 10°2 lsampiefd(WXp%); w(p)) < (1+ )d(W(P); Whest)g

from which it is sampledrandomly.

Wei et al. usethe L, norm for distance calculation, but without any convolution. After-
wards the neighborhood w® with the smallest distance d is selected. The distance tolerance
Omax = argminWOd(WO- W(p));WO I sample-

1P) = 19°2 I samplejd(wp); W(p)) = argmin,,ed(w, w(p))g:

2.3 Computational E orts

Pixel basedsynthesishasa high computational cost, which consistmainly of the high number
of gray value di erences of the single pixels, that hasto be calculated. Let Wsample and hsampie
be the width and the height of the input sample. According to [20] a L-shaped neighborhood
is assumed. To synthesize one pixel, Wsample hsample S€art stepsare needed. Further on for
eat seart step (he 1)we + d(we=2)e pixel comparisons(di erence operations) have to be
made. Consequetly the total computational cost consistsof

Nop = Wsample hsample((he  1)We + d(We=2)€)

di erence operations for the synthesisof onepixel. The computational costof Efros' algorithm
is in the sameorder of magnitude. Figure 2.4 shows that the number of operations increases
exponertially with the size of the input sample.

2.4 Results

We implemented Wei's algorithm. The algorithm producesgood results, as already Wei et
al. show in [20]. But despite of that it is too slov. To create an output image of 200 200
from an input sampleof 128 128 (with 256 gray levels), more than 2100s (more than 35
minutes) are neededby our implementation with a neighborhood of height he = 3 and width
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Figure 2.4: Number of operations/pixel depending on the size of the input sample (we = 25,
he = 13). A quadratic input sampleis assumed.

We = 7, and more than 2700s (more than 45 minutes) with a neighborhood of height he = 3
and width we = 9. But one hasto remenber that with neighborhoods of these sizes,only
small stochastic constraints can be captured. To reproduce bigger texels su cien tly, larger
neighborhoods are needed,which increasethe computational cost enormously
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Figure 2.5: Pixel basedsynthesis. Results. (a) Input sample(128 128), gray scale8 bit/pixel
(b) Synthesizedimage,we = 7, he = 3. () Synthesizedimage, we = 9, he = 3.



Chapter 3

Patch Based Texture Synthesis

Pixel basedtexture synthesishasleadto good results. But despite of that it is still too slow.
Onething, that canbe seenwith pixel basedsynthesis, is that neighbored pixels are normally
highly correlated. Imagine a circle on a plane: Oncea part of the circle hasbeensynthesized,
all other pixels are determined [5]. As conclusionof the upper assumption can be drawn, not
to synthesizesinglepixels, but larger texture parts at once. In this chapter various approades
to this are preseried. First, the algorithm is motivated theoretically. Second,the practical
implementation is approadied and free parameters are discussed. Finally, we end with a
presenation of the results in comparisonto the pixel basedmethod (computational e orts,
visual delit y). The various approades are treated as far as possiblecommonly. Whenever
di erences appear, these are mentioned explicitly .

3.1 Theoretical Approac h

Various similar papers have been published, which deal with the approad, not to sample
single pixels, but patches from an input sample [5],[13]. In the beginning the approad of
pixel based synthesis (Chapter 2) is followed. Again the texture is modeled as a MRF,
the brightnessvalue of a pixel being highly correlated to the brightnessvaluesof its spatial
neighbors.

Let | be animagethat is synthesizedfrom an in nite texture |,.,. Let further be R |

be a square patch of pixels with the neighborhood (seam) R(R) | modeled around R.
Finally we dene a blcck B = (R[ R(R)) | as the combination of patch and seam
We
R(R) — R £

Whp

Figure 3.1: Patch basedsampling. Block B consisting of patch R with surrounding neighbor-
hood R(R).

11



12 CHAPTER 3. PATCH BASED TEXTURE SYNTHESIS

lshrwwes|

() (b)

Figure 3.2: Overview patch seard process. Given a texture input sample (a) and an out-
put image (b), in which one patch R is synthesized. From all neighborhoods R® which
match the criterion  ©(painted in the input sample), oneis randomly selected(red), and the
corresponding patch is copiedto the output image.

(Figure 3.1). The approad consists- like in the pixel basedtexture synthesisfrom Chapter
2 - in estimating a set containing all sourcesof a certain patch R in |,5. This estimation
is done in consideration of the stochastic dependenciesin the MRF by a comparison of the
neighborhoods. From the set of patches,which contains all supposedsourcesof R in | ¢4, the
patch R I sample IS nally sampledrandomly to | . Likein Section2.1,the estimation is done
by calculating the conditional pdf P(Rj R(R)) in | e4. This canbe empirically approximated
by the histogram of the set ( R) = fR? 1 qjd( R{RY; R(R)) = 0g, where RYRY I eq
is the neighborhood of R%in |y and d( Ry; R») is an appropriate distance between two
neighborhoods R; and R».

In real case,onceagain an image with nite texture Isample |real is introduced, and so
| real iS substituted by |sampe. Consequetially, hasto be adaptedto an qR) = fR°
| sampiejd( RARY; R(R)) < dmaxd, where RYRY  lsampie is the neighborhood of R? in
| sample @nd dmax is an appropriate distance tolerance.

3.2 Further Approac h to the Algorithm

3.2.1 Edge Handling

Only patchesare consideredfor sampling, whoseblocks B © I sample @re completely in | sample-
Further on patches are copied with the neighborhood as whole blocks to the output image
| (seeSection 3.2.3). For all blocks B which are sampled directly to the boundary of the
output imagel , the patchesR are placedexactly at the boundary of |, with no neighborhood

RARY betweenR®and and the boundary of | (Figure 3.3). If a block B °exceedshe output
image boundaries, only the pixels within the boundaries would be processedfor distance
calculation.
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We

We

R

|
A
Figure 3.3: Arrangemert of blocks in the output image. The blocks are copied with their
neighborhood in a manner that these seamsoverlap. Note that for blocks at the image

boundary no seamis copied. Only the yellow marked part of the neighborhood R is used
for distance calculation.

3.2.2 Processing and Causalit y Criterion

The output imageis initialized with a randomly copied block from | sampie, Which is placedin
the upper left corner of the output image. The remaining blocks are sampledin raster scan
order, i.e. from top to bottom and from left to right.

To match the causality criterion, not the whole neighborhood R(R) is usedfor distance
calculation, but only the upper and left part of this neighborhood. If R touchesan image
boundary, the according part of the neighborhood is neglectedbecauseof above mertioned
edgehandling (Section 3.2.1, Figure 3.3).

3.2.3 Arrangemen t of Blo cks

It could be suggested,just to copy the selectedpatch R%to the output image. As it can be
seenin Figure 3.4 (b), block boundariescan easily be seen,and this method doesnot satisfy
a high visual delity. In [5] and [13] two ways to solve this problem are proposed. Both
e orts usethe seamto advancethe results. The blocks B % are copiedto the output imagein
a manner, that the seamsoverlap. (Figure 3.3)

In [5] the overlapping processis done by calculating the minimum cost path in the seams
between the newly chosenblock and the already sampled blocks. Finally the new block is
pasted along this path. We do not follow this approad. Instead, to reduce computational
e orts, another approad is followed. In [13], p. 7, a simple blending (feathering, [18], p.
252) betweenthe two seamsis proposed. It weightens the pixels in ead block proportionally
to their distanceto the edgeof B (Figure 3.5). A disadvantage of this solution is, that the
algorithm smoothes the texture along the boundaries, which could have a negative e ect to
the sharpnessof the texture.
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@) (b)

Figure 3.4: Block arrangemen with and without blending. (a) Input texture [2]. (b) Patch
basedsynthesiswithout blending. Block boundariescan easily be recognized.(c) Patch based

synthesis with blending.

w(x)

1:0
0:5
0:0 T
0 We=2 We X
Blo ck Blending Blo ck
B1 Seam Spesut = B2
f(S1;S2)

Figure 3.5: Feathering of the blocks B; (with seam$S;, left) and block B, (with seamS,,
right). The imagein the seamregion S;egyt results from a blending of the brightnesslevels
of S; and S,, linear dependert on the distance from the block edges. Siesut(X) = (1

W(x)) S1(x) + W(x)S2(x).
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Figure 3.6: Comparisonof di erent patch sizeswy. (a) Input texture [3], gray scale8 bit/pixel.
Sizeof the characteristic bricks about 20 40 (width  height). (b) Synthesizedimage,wp = 5,
We = 4: In generalthe texture structure is not reproduced correctly. (c) Synthesizedimage,
wp = 25, we = 4: Horizontal structure is recognizable. (d) Synthesized image, wy = 45,
We = 4: Horizontal and vertical structures are reproduced. (e) Synthesizedimage, w, = 100,
We = 4: Structures are reproduced, but only little interaction betweenthese structures is left
over to the algorithm.

3.3 Free Parameters

3.3.1 Patch Size wy

The patch sizeis the most critical parameter of this algorithm, and can be comparedto the
neighborhood in the pixel basedmethod. The patch hasto capture the statistical constraints
of the input texture and transfer them to the output image, which has in the pixel based
synthesisthe neighborhood to do. A smaller w, meansmore randomnessin the output image
and vice versa. The patch sizeshould be big enoughto capture the biggestregular structure
in the texture. But it should not be too big, sothat interaction betweenthese structures is
left over to the algorithm ([5], Figure 3.6).

3.3.2 Seam Size we

The seamsizeshould be big enoughto capture statistical constraints acrosspatch boundaries:
A large we catches strong statistical constraints, which forcesa natural transition of texture
featuresacrossboundaries. In our tests the width of the seamis largely independert on other
parameters, and - depending on the texture - good results can be reached with a very small
seam(e.g. for very smooth textures). A large e ect to the visual delit y of the output image
has also the blending, which must not be neglected. Good results have been obtained with
seamsof widths we 5. It is important not to make the seamtoo big, to avoid introduced
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errors and a loss of sharpnessbecauseof the blending, and to reduce computational e orts.
(Figure 3.7)

3.3.3 Distance d

For distance calculation we use

X
dRER) =AY (RY ROI¥% RY2 R® R¢2 R;
k=1

whereA is the number of processedixelsand R and RCaretwo, in sizeand shape identical,
neighborhoods.

For color imagesthe distance is calculated for eady RGB componert separately The
resulting distance d is calculated by the quadratic mean of the RGB distances.
r
d= ! d% + d2 + d3
= §( R+ dg * dg)

3.3.4 Distance Tolerance dpay

In [13], p. 9the distancetoleranceis depender on a quality parameter and the neighborhood
R(R) of the actually to be synthesizedpatch R:

X
Omax = Omax; = [A ! ( Rk)2]1=2;
k=1

where A is the number of processecpixels and Rx 2 R(R) are the brightnessvaluesof the
pixels in the neighborhood of R. If none of the processedlock neighborhoods matchesthis
distance tolerance, the block with the minimum distance is selected. A value of = 0:2 is
proposedin [13], p. 9.

In contrast to that, we just setthe distance tolerance dependert on the n best blocks:

dmax = dmax; n = d( RY415 R(R));

where RQ,, isthe (n+1)-th best matching neighborhood (neighborhood with the (n+1)-th
smallestdi erence d( R% R(R)); R® Isampie) to the to be sampledpatch R I. So

4R) = FR  lsampieid( RARY; R(R)) < d( R%,;; R(R))g;

where RARY  Isampie is the neighborhood of R%in I sample. This choice has the advantage
to determine directly the randomnessof synthesis processby the parameter n. The quality is
ensuredbecauseof the selectionof the n best blocks. Good results have beenobtained with
n 5. With this choice of a distance tolerance, a with the factor A ! normalized distance
d is not necessary Despite of that we leave it to enable an easy comparison with Liang's
distancetolerance dmax: -



3.3. FREE PARAMETERS 17

Figure 3.7: Comparison of di erent seamsizeswe. (a) Input texture [14]. Patch sizewy =
25. (b) Synthesizedimage, we = 1. Problems with the feature matching can be seen. (c)
Synthesized image, we = 3. Smoother transitions can be obsened. (d) Synthesizedimage,
we = 5. Best result. Good feature matching, smooth transitions. (d) Synthesizedimage,
we = 10. Smooth transitions, good feature matching, but rst errorsintroduced by blending.
(e) Synthesizedimage, we = 20. Strong errors intro duced by blending.
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Figure 3.8: Number of di erence operations/pixel dependingin the size of | sample (@ssuming
aquadratic | sampie). Patch basedsynthesis: wy = 25, we = 5. Pixel basedsynthesis: we = 25,
he = 13.

3.4 Computational E orts

Patch basedsynthesis has in comparisonto the pixel basedsynthesis processin common a
reduced computational e ort. Causeof the reduction is the sampling of whole blocks instead
of single pixels. Let Wsample and hsampie b€ the width and the height of the input sample. The
number of seard stepsfor the synthesisof oneblock is (Wsample Wn  2We+ 1)(Nsample Wb
2we + 1). For eath seart steps2we(wy+ 2we) pixels in the neighborhood are processednote
the overlap in the upper left corner), and for eat a di erence of gray valuesis calculated.
The resulting e ort hasto be be divided by the number of pixels in a block, to obtain the
valuesfor one pixel. The resulting number of di erence operations for one pixel is

n (Wsample Wb 2We + 1)(Nsample Wb 2We + 1) 2We(Wp + 2We) |
o (Wp + 2wWe)(Wp + 2We) .

Pleasenote that in this approximation a preciseedgehandling has beenneglected.

Both algorithms, pixel and patch basedapproades,show a parallel exponertial increasing
number of di erence operations depending on the size of the input sample (Figure 3.8). But
a clear enhancemen in e ectivit y can be seenusing the patch basedtexture synthesis.

3.5 Results

As the Figures 3.9, 3.10 and 3.11 show, patch basedsampling producesbetter results with
lesstemporal e orts than pixel basedsampling. Sampling of whole blocks conseneswell the
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Figure 3.9: Patch basedsynthesis. Results (1). Size of the input texture 128 128, size of
the synthesizedimages200 200. In bracketstime in secondsfor synthesis process.(a) Input
image, gray scale8 bit/pixel (b) Synthesizedimage, pixel basedsynthesis, we = 9, he = 3
(27805s). (c) Synthesizedimage, w, = 25, we = 5 (10 s).

character of the texture and leadsto naturally looking output textures. Main advantage in
respect to pixel basedsampling is the capture of bigger stochastic constraints by patch and
seamthan in pixel basedsampling with comparable computational cost. Until today pixel
basedsampling su ers from the constricted neighborhood becauseof a too high computational
eort. This can easily be seenin (Figures 3.10 (b), (e), (h)). Bigger, strongly from the
badkground varying structures are not reproduced. These structures are better reproduced
by the patch basedsynthesis, becauseof the copying of whole blocks to the output image.
This approad captures automatically the structures of the foreground. In common no block
boundariesare visible becauseof the blending, which though has a low computational cost.

Figure 3.12 shawvs exemplarily a map of distance values during the block seart process.
The next synthesizedblock B is chosenfrom the blocks with the n lowest values. It can be
seenthat for the highly stochastic texture (a) exist only few local minimums, with a slowly
increasing ervironment. In cortrast to that many, periodic local minimums can be seenin
the highly deterministic texture (d), with rapidly increasing ervironment. Also clearly the
structure of the texture (texels) can be recognizedin (f).

Howewer various disadvantages of the block based method can be seen. It can not be
avoided, that sometimesblock boundaries becomevisible. Cause of this is normally a bad
continuation of existing structures (Figure 3.10(i), 3.11(f)). Another problem is that patch
based synthesis tends - other than pixel based synthesis - to visible repetitions of certain
blocks (and neighbors) in the output image (Figure 3.9 (c) at the boundary to the dark part).
This problem dependson the noticeability of the repeated block. So disturbs the repetition
of very smooth blocks lessthan the repetition of very eye-catding structures. The problem
gets worse when synthesizing large images from very small input samples. Neverthelessa
higher stochastic variability would be desirable. Further on as in Section 3.4 can be seen,
the computational e orts are still too high, especially when synthesizing from bigger input
samples. So the synthesis of an image of the size200 200 (wy = 25, we = 5) from a color
input image | sample Of the size200 200 needsmore than 93 s (128 s from 300 300, 440 s
from 400 400, 716 s from 500 500 etc.). The eort in time is far away from real time
synthesis.

As nal result can be drawn that patch basedsynthesis produces- especially for highly
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Figure 3.10: Patch basedsynthesis. Results (2). Sizeof the input textures 192 192, size of
the synthesizedimages200 200. In brackets time in seconds.Image (h) was downloaded
from Wei's Web page [21]. (a) Input image, gray scale8 bit/pixel. (b) Synthesizedimage,
pixel basedsynthesis,we = 9, he = 3 (6447s). (c) Synthesizedimage, patch basedsynthesis,
wp = 25, we = 5 (32 s). (d) Input image, gray scale8 bit/pixel. (e) Synthesized image,
pixel basedsynthesis,we = 9, he = 3 (64885s). (f) Synthesizedimage, patch basedsynthesis,
wp = 25, we = 5 (33 s). (9) Input image [14]. (h) Synthesizedimage, pixel basedsynthesis
[21]. (i) Synthesizedimage, patch basedsynthesis, w, = 40, we = 5 (64 s).
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Figure 3.11: Patch basedsynthesis. Results (3). Sizeof the input images192 192,sizeof the
synthesizedtextures 200 200. In brackets time in secondsfor synthesis process.lmages(b),
(e), (h) were downloaded from Wei's Web page[21]. (a) Input image [14]. (b) Synthesized
image, pixel based synthesis [21]. (c) Synthesized image, patch based synthesis, wp = 20,
We = 5 (88 s). (d) Input image [14]. (e) Synthesizedimage, pixel basedsynthesis [21]. (f)
Synthesizedimage, patch basedsynthesis, w, = 25, we = 5 (83 s). (g) Input image [14]. (h)
Synthesized image, pixel basedsynthesis[21]. (i) Synthesizedimage, patch basedsynthesis,
wp = 35,we = 5 (57 s).



22 CHAPTER 3. PATCH BASED TEXTURE SYNTHESIS

(b) (©)

bhrﬁ.rrp

|
45

(d) ' (e) )

Figure 3.12: Distance values of the seard for the next block, which is synthesizedin (b)
resp. (e) from (a) resp. (d). Boundary zones,in which no valid blocks can be found (Section
3.2.1) are not displayed in (c) and (f). (a) Input texture (150 150), gray scale8 bit/pixel.
(b) Synthesizedimage (200 200), in progress. (c) Distance valuesof all valid blocks (wy =
25;we = 5) of the input texture (a). (d) Input texture [3] (150 150), gray scale8 hit/pixel.
(e) Synthesizedimage (200 200), in progress. (f) Distance valuesof all valid blocks (wy =
25;we = 5) of the input texture (d).
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stochastic, natural textures with bigger structuresinside (Figures 3.9(a), (d), (g)) subjectively
better results in lesstime. But there still are points to advancethe algorithm.
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Chapter 4

Impro vements

Despite of an improvemert of the visual delit y and computational cost in comparison to
pixel basedmethods, still remain possibilities to advancethe results. In the following chapter
rstly possibilities to maximize the visual delit y, and secondlya possibility to minimize the
computational cost for the synthesis of highly stochastic textures are intro duced.

4.1 Application of Isometries

One of the critics in Section 3.5 was the moderate variability in the output image, which
could be improved. Neverthelesswe hold on the block basedsampling, without making the
number n of selectedblocks too big, which could intro duce errors causedby a bad matching
of the synthesizedblocks to the image. We extend the variability by increasinge ectiv ely the
number of available blocks in | sampie, Without making | sampie larger.

In former approadies,blocks are sampledwithout modi cations from the input image. But
imagine an arc in the sourceimage, running from the top to the right edge. The algorithm
starts at a certain position at the left boundary of the output texture with the most horizontal
part of this arc. A cortinuation to the top is impossible,becauseof the processingin raster
scanorder. A horizontal continuation to the right would signify a steady usageof the same
part of the arc, and causevisual in delit y, becauseof visible repetitions (Figure 4.1 (b)).
Desirablein terms of an increasedstochastic variabilit y would be instead another cortin uation
of the arc, either an arc to the down, or another characteristic. This is possible by an
application of transformations either to the input sample | szmpie Or to single blocks B
I sample- Last but not least exactly these modi cations of sampledtexture blocks are needed
for the synthesis of segmened textures (Section 5.3).

4.1.1 Approac h

In the following various transformations of single square blocks B are introduced. We call
these transformations with referenceto [9], p. 20, isometries. Let B be a block of N N
pixels, and Bj; 2 B be a single pixel of this block, with i;j 2 f0;1;:::;N  1g. Sothe
following isometriesare de ned:

0. Identity:
lo(Bij ) = Bij :

25
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1. Orthogonal re ection about mid-vertical axis (j = (N 1)=2) of block:
11(Bij) = Bin 1 j:
2. Orthogonal re ection about mid-horizontal axis (i = (N  1)=2) of block:
I2(Bij) = Bn 1 ij -
3. Orthogonal re ection about rst diagonal (i = j) of block:
I3(Bij ) = Bj;i:
4. Orthogonal re ection about seconddiagonal (i = N 1 j) of block:
14(Bij) = Bn 1 N 1 i
5. Rotation around certer of block, through +90 :
I5(Bij) = Bjn 1 i
6. Rotation around certer of block, through +180 :
l6(Bij) = Bn 10N 1
7. Rotation around certer of block, through -90:
17(Bij) = BN 1 i

Now the above intro duced isometriesare applied to all blocks B | sampie. The transformed
blocks B are consideredfor patch basedsampling.

The application is done by splitting the isometriesinto three categories, which can be
applied alone or together to all blocks B

Category 0 Contains the isometry 0 (equivalent to processingin Chapter 3).

Category 1 Contains the isometries 0, 1, 2, 6. Only transformations, which change the
block character approximately about 180 are applied.

Category 2 Contains the isometriesO, 3, 4, 5, 7. Also transformations, which change the
block character approximately about 90 and re ections about diagonalsare applied.

This split is donewith respect to the increasing computational e ort and to the application

area. The increasingof the computational costconsistsnot only in calculating a higher number
of distance values, becauseof e ectiv ely more available blocks, but alsoin application of the
isometriesto the blocks. Further on, a category with no additional isometries,and categories
with isometries,which changethe block character through (approximately) 180 (e.g. to mirror

a semi-circle) and 90 (e.g. to rotate a quarter-circle) are regardedas reasonable.
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(d) (e)

Figure 4.1: Patch based synthesis with application of isometries. Parameters: wy = 25,
We = 5, n = 2. The synthesized pictures (300 150) were created with the input image
(150 150) asinitialization (left), which is continued with patch basedsampling to the right.
In brackets time in seconds.(a) Input image, gray scale8 bit/pixel. (b) Synthesizedimage,
application of isometriesof the category O (previous processing)(9 s). (c) Synthesizedimage,
application of isometries of the category 1 (23 s). (d) Synthesized image, application of
isometries of the category 2 (30 s). (e) Synthesized image, application of isometries of the
categoriesl and 2 (45 s).

4.1.2 Results

The introduction of isometries leads to an improved stochastic variability of the sampled
blocks. With additional isometriesan e ectiv ely larger number of blocks is available for the
synthesis process,becauseof block transformations, without damaging the visual quality of
the blocks. In general, smaller distance valuesd can be obtained for many blocks B by the
additional application of isometries(Figure 4.2). For this reasonother blocks could match the
distancetolerancedmax and takeninto accourt for sampling. This enablesa higher variabilit y
of the blocks sampledto |, and therewith alessdeterministic contin uation of already sampled
blocks is possible.

As can be seenin the Figures 4.1 and 4.3, an application of additional isometriesto the
blocks can optimize the visual delit y of the output image - whenewer an improved stochastic
variability is desired. In Figure 4.3 (a) - (d) can be seen, how dierent the synthesized
results can be, in regard to the handling of the dark zone. Without additional isometries
(category 0), this dark zoneis likely cortinued endlessly With isometriesof the categoriesl
and 2 another courseis possible. Though it is visible in Figure 4.3 (c) - (e) that repetitions
of certain blocks can not always be avoided, but they are lessvisible, becauseof previous
transformations. But also Figure 4.3 (f) - (j) shawsthat for highly deterministic textures the
application of isometries can even lead to worse results. In this casethe Herringbone Wave
is not always cortinued correctly, and the results appear worse than without application of
additional isometries(Figure 4.3(g)). For thesecasesa higher variability of the output image
is normally not desired. So we seethat the application of isometries always dependson the
application area.
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() (b)

(d)

Figure 4.2: Distance values of the seart for the next block (continuation from Figure 3.12
(a) - (c)). For ead block the noted isometriesare applied. The bestresult is presered in the
graphic. (a) Distance valueswithout additional isometries (category 0). (b) Distance values
with isometries category 1. (c) Distance values with isometries category 2. (d) Distance

valueswith isometriescategory 1 and 2.
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Figure 4.3: Patch basedsynthesis with application of additional isometries. Results. For all
synthesizedimagesthe parameterswy = 25, we = 5, n = 5 are used. All synthesizedimages
are initialized with the same,deterministic block B, to enable a better comparison. Size of
the input textures 150 150, size of the synthesizedimages200 200. In brackets time in
seconds. (a) Input texture. (b) Synthesizedimage, application of isometry category 0 (17
s). (c) Synthesizedimage, application of isometry category 1 (46 s). (d) Synthesizedimage,
application of isometry category 2 (57 s). (e) Synthesizedimage, application of isometry cat-
egoriesl and 2 (83 s). (f) Input texture [3]. (g) Synthesizedimage, application of isometry
category 0 (17 s) (h) Synthesizedimage, application of isometry category 1 (43 s). (i) Syn-
thesizedimage, application of isometry category 2 (57 s). (j) Synthesizedimage, application

of isometry categoriesl and 2 (84 s).
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As disadvantages have to be seenthat the selection, if isometries should be applied, de-
pendson the characteristic of the input sample. Until today this estimation is done by the
userin a subjective manner. Further on the application of isometriesentails an increasing of
the computational cost. First, the computational cost is increasedby applying the transfor-
mations to the blocks. But this only hasto be calculated once, and can be done before the
synthesis process. Second,the computational cost is increasedby calculating more distance
values d, which hasto be done for eath synthesizedblock. So roughly estimated - neglect-
ing the increasede ort by applying the isometriesto the blocks - the computational cost is
multiplied by the number of applied isometries.

Concluding it canbe said that an application of isometriesis only recommendedfor highly
stochastic textures, where also a highly variable output texture is desired. Becauseof an
increasing of the computational cost and possibleundesiredtransformations, the application
of isometriesshould be restricted to all necessaryisometries.

4.2 Prevention of Rep etitions

As further mentioned in Section 3.5, patch based sampling leads from time to time to an-
noying, visible repetitions of certain image parts. Sowe are further looking for a possibility
to prevert repetitions as far as possible. Becauseof the restricted size of the input sample
I sample, repetitions can not be avoided, when the size of the synthesizedtexture exceedsthe
size of the input sample. A rst approad would be an equal distribution of all pixels from
taken the input sampleto the output texture. In respect of the quality of the synthesizedtex-
ture, a strict equaldistribution could leadto worseresults. An approac with a consideration
of the block neighborhoods suggestsitself.

4.2.1 Approac h

In generalwe follow the approad, to modify the block distance calculation. We do this by
intro ducing an additional block weight depending on the number of repetitions of the whole
block or of parts of it. Di erent modesof marking the blocks can be imagined. One way could
be,to mark ead single pixel of the sampledblock asused. The block weight would have to be
calculated by an in generalweighted sum of the pixel marks of the analyzedblock. Although
this approadc would be very accurate, it su ers from the high introduced computational cost
becauseof the sum calculation for ead analyzed block.

Another approad is implemented by us. Let ¢; be a courter for ead block Bj | sample-
In the beginning all blocks B; are marked as unused, meaning ¢; = 0. For eat usageof a
block Bj, this block and all blocks which are located within the spatial distanceof wy+ 2we 1
pixels from B; are marked as used (Figure 4.4). This is done by increasingc; by one. The
consideration of neighbored blocks is done, becausethe in the distance of wy+ 2we 1 pixels
surrounding blocks also cortain pixels of the actually sampledblock Bj.

In the following the number of marks, represenied by c¢; of eat block B;, is consideredin
the further synthesisprocess.We do this by intro ducing a new distance dyepetition ;i = di + Cidi,
where d; is the in Section 3.3.3 intro duced distance. So a higher distance to the block B; is
assigned,wheneer this block or parts of it could be sampledrepeatedly. But alsothe block
B; is in the caseof repetition not automatically pushedout of rangeand all other blocks given
a preference,even if they have a very bad matching and therefore a very high distanced;. So
further a block, which could be repeated once, with a very small distance is preferred to a
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Figure 4.4: Prevertion of repetitions. All blocks within the distance wp + 2we 1 from B;
from the sampledblock B are marked as used.

block, whosedistance is very large. This is done with respect to the high visible corruption,
that a worseblock could cause. Always a high visual delit y with repetitions is preferred to
a strict equal distribution.

4.2.2 Results

As in Figure 4.5 can be seen,the application of the above preseried repetition prevertion
algorithm can produce good results. Figure 4.5 (c) and (f) and (h) show signi cantly that
the synthesizedimage has lessnoticeable repetitions than the result produced without that
preverntion. Very deterministic textures are synthesizedwithout bigger problems,although the
result is slightly worsethan without the application (Figure 4.6 (b), (c)). Howewer application
to sud textures is normally senselessbecausevery deterministic textures normally consist
in repeating regularly certain texels. The algorithm fails for not uniform input samples,as
Figure 4.6 (f) shawvs. Problems in the transition betweenthe dark and bright part can be
seen. The transition should be continued with dark blocks, but theseare already repeatedtoo
often. A solution for this problem could be found in a segmemation of the textures, and in a
further application of the algorithm to the single segmers. As also can be seenin Figure 4.6
(), the preventions fails for very small input sampleswith striking elemerts. Although Figure
4.6 (h) cortains a lot of repetitions, these are subjectively lesssigni cant than in Figure 4.6
(i). Causefor this is that the in (h) repeated blocks belongto the very smooth image area.
The visual delit y of the image (i) is worse, becauseof the multiple repetition of a striking
elemen. The computational e ort of the algorithm is imperceptible in comparisonto the
distance calculations during the seart process,asthe measuredvalues show.

As result can be drawn that this algorithm for prevertion of repetitions works well for
large, uniform and highly stochastic input samples. As above shaved, it fails for very small
and for not uniform input samples. An application to highly deterministic textures appears
senseless.In respect to the computational cost it is neutral compared to the cost of the
seart process. Howewer there are many possibilities to improve the algorithm. As already
above mertioned, for not uniform textures a segmetmation of the textures and a following
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Figure 4.5: Prevertion of repetitions. Results (1). Size of the input images200 200. Size
of the synthesized images300 300. For demonstration purpose, synthesized images are
initialized identically. In brackets synthesis time in seconds. (a) Input image, gray scale8
bit/pixel. (b) Synthesizedimage,w, = 25 we = 5;n = 1. No prevention of repetitions applied
(73 s). (c) Synthesizedimage, wp = 25;we = 5;n = 1. Prevertion of repetitions applied (73
s). (d) Input image, gray scale8 bit/pixel. (e) Synthesizedimage, wp = 25 we = 5;n = 1.
No prevertion of repetitions applied (72 s). (f) Synthesizedimage, wp = 25we = 5;n
Prevention of repetitions applied (73 s). (g) Synthesized image, wp = 25 we = 5;n
No prevertion of repetitions applied (73 s). (h) Synthesizedimage, w, = 25 we = 5;n
Prevertion of repetitions applied (73 s).

1.
5.
5.
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Figure 4.6: Prevertion of repetitions. Results (2). Size of the input images (a) and (d)
200 200, (g) 150 150. Size of the synthesized images 300 300. For demonstration
purpose, the synthesized images are initialized identically. In brackets synthesis time in
seconds. (a) Input image. (b) Synthesizedimage, w, = 25we = 5;n = 1. No prevention
of repetitions applied (183 s). (c) Synthesizedimage, wp = 25w = 5;n = 1. Prevertion of
repetitions applied (182 s). (d) Input image, gray scale8 bit/pixel. (e) Synthesizedimage,
wp = 25We = 5;n = 1. No prevertion of repetitions applied (72 s). (f) Synthesizedimage,
wp = 25 we = 5;n = 1. Prevention of repetitions applied (73 s). (g) Input image, gray scale
8 bit/pixel. (h) Synthesized image, w, = 25we = 5n = 1. No prevertion of repetitions
applied (34 s). (i) Synthesizedimage, w, = 25w = 5;n = 1. Prevertion of repetitions
applied (34 s).
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application to the segmers could be imagined. Problem further is that the algorithm does
not take in account the relative position of repeated blocks to ead other. The algorithm is
dependert on the number of sampledblocks betweenpossiblerepetitions. Becauseof this and
a processingin raster scanorder, repetitions in horizontal direction are more improbable than
in vertical direction. Soit still could be, if all blocks are marked again betweenthe processing
of a certain block and the block just below, that this block is repeated directly belowv. This
could be improved by regarding the local distance between possibly repeated blocks.

4.3 Application of a Multiresolution  Pyramid

One of the main critics to the existing algorithm is the high computational cost. As can be
seenin Section 3.4, the computational e ort is highly dependert on the sizesof input sample
and neighborhood. An acceleration of the algorithm could be readed, if these parameters
can be reduced. One approad, to do this, is a processingin various resolutions, as already
proposedby [13], [20] and [22].

4.3.1 Approac h

Multiresolution analysis of imagesis already highly common. We do this by applying a
multiresolution pyramid (MRP) to the input samplelsampie and the already processedpart
of the output texture |. The pyramid has one base (I = 0) and two reduced (I = 1;2)
levels | (Figure 4.7 (a)). Each reduced level | cortains the ltered and with the factor 2
subsampledimage of the lower level | 1. Filtering is done with a mean Iter with a mask
of 3 3. The ltering and subsampling, rstly to level | = 1 and secondlyto level | =
2, are applied to the input sample | sampe and the already processedoutput texture | to
obtain | sampie;level | and liever 1. Afterwards, the patch basedseart algorithm, as presened
in Chapter 3, is applied to level | = 2 of the MRP. Note that the sizesof the patch R and
neighborhood R have to be adapted to bw,=2'c and bwe=2'c. After having chosena block
Blevel 1, Which matches the criterion  © this block is projected onto the next lower level
| 1= 1to receive Blevei| 1. An areaA  lsamplejlevel | 1 IS CUt Of I sampielevel 1 1 With the
sizeof (2(bwp=2'c+ 2bwe=2'c)) (2(bwp=2'c+ 2bwe=2'c)) certered around Bjevel | 1 (Figure 4.7
(b)). Within this area A the seard processis continued by another application of the block
seard algorithm. This is analogically repeated until a block B eve o from level O is chosen.
Finally this block Bevel ¢ is sampledto the output imagel .

4.3.2 Results

The number of di erence operations/block at level 2 is

Nopllevel 2 (Wsample=4C  Wh2  2We2+ 1)(bNsample=4C  Whp  2Wepp + 1) 2We2(Wpp + 2We:2);
where w,| = bwp=2'c and we; = bwe=2'c. At level 1 are

Nopilevel 1 ((2Wh1+ 4Wer Wp  2We1+ 1)((2Wp+ 4Wei1) Wh1 2Went+ 1) 2Wein(Wh1+ 2We;1)
operations necessaryand nally remain for level O

Nop;level 0 ((2Wb;0+ 4We;0) Who 2We;0+ l)((ZWb;O"' 4We;0) Who 2We;0+ 1) 2We;O(Wb;O+ 2We;O)
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Figure 4.7: Multiresolution processing. (a) 3 level MRP. Image | sample iS represened in
original resolution | sampe; leveio (300 300, level 0) and two reducedresolutions | sampie; level
(b) Block Bieyel | is chosenfrom
pyramid level I. It is projected to the next lower level I-1. A new seart area A (yellow) is
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Figure 4.8: Number of di erence operations/pixel dependingon the sizeof | sampie (assuminga
quadratic | sampie). Pixel basedsynthesis: we = 25, he = 13. Patch basedsynthesis: wy, = 25,
we = 5. Patch basedsynthesis (MRP): wy, = 25, we = 5, application of a 3-level MRP.
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operations. We obtain

n . (Nop:level 2 + Nop:level 1 + Nop:level 0)
op;pyrami
PPy (Wp + 2we)(Wp + 2We)

di erence operations for the processingof one pixel. As in former approades, a preciseedge
handling has beenneglected. Also neglectedin above calculations was the e ort for Itering
and subsampling. We regard this costassmall in comparisonto the costof the seard process.
Filtering and subsamplingof | sampie hasonly to be done once. From the processed only the
processedparts of the neighborhood have to be reducedin their resolution. Sothe number
of operations/synthesized pixel can be clearly reducedby the application of a multiresolution
analysis, as Figure 4.8 shavs. A clear gain in e ectivenesscomparedto patch basedtexture
synthesiswithout MRP and to pixel basedtexture synthesis could be made.

Despite of the gain in computational cost, the algorithm producesgood output results
for highly stochastic textures, as Figure 4.9 shows. The quality of the synthesized texture
is equal for highly stochastic textures in comparisonto patch basedsynthesis without MRP.
Sometimesa trend to very smooth image areascan be obsened (Figure 4.3 (i)). For highly
deterministic textures with many similar blocks the algorithm with MRP produces worse
results than without MRP (Figure 4.10(c)). It canbe seen,that the block transitions do not
match exactly. Becauseof the high similarity of the input texture can be assumedthat the
algorithm already choosesa wrong block Beye 2 at the highest pyramid level | = 2. At this
point the algorithm could be advanced,e.g. by application of a quad tree pyramid ([13], p. 15
seqq.) instead of the hereintroduced MRP. Also an application of other lter (e.g. Gaussian
kernel) could be considered.

Concluding it can be said, that the application of a MRP leads - for highly stochastic
textures - to a massiwe shortageof synthesistime and producesimageswith the samequality.
Only for highly deterministic textures with many similar blocks a slight reduction of the
quality can be obsened. Although of great improvemerts in the computational e orts, the
algorithm still dependshighly on the size of the input texture.

4.4 Summary

The in this chapter introduced methods advance the in Chapter 3 preseried patch based
texture synthesis. The introduction of isometries (Section 4.1) improvesthe stochastic vari-
ability of the synthesizedimage by application of transformations to the synthesizedblocks.
Unfortunately it brings along an increasing of the computational cost by a comparison of
more blocks. Also it could help to reduce visible block boundariesby a better transition of
structures. Visible repetitions could be prevernted with the algorithm for prevertion of repeti-
tions (Section4.2). It isin its computational costneutral, but could leadto worsesynthesized
imagesfor not uniform textures and very small input samples. Finally the application of a
MRP (Section 4.3) leadsto a massiwe improvemert in computational cost, and for stochas-
tic textures no lossin quality can be obsened. But still a high dependencyon the size of
the input sampleremains. Still not su cien tly solved is that as a matter of principle block
bounds could becomevisible. This could be improved by the application of isometries, but
not totally avoided. We do not think that this can be solved by a block basedalgorithm.
The in this chapter introducedimprovemeris do in generalnot work well for all typesof
textures. They were introduced for the work with highly stochastic textures, and especially
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(9) (h) (i)

) (k) ()

Figure 4.9: Patch basedtexture synthesiswith application of a MRP. Results (1). Sizeof the
input images200 200, sizeof the synthesizedimages200 200. For demonstration purpose,
imagesare initialized identically. In brackets time in seconds.(a) Input image, gray level 8
bit/pixel. (b) Synthesizedimage, w, = 25, we = 5, n = 5. Patch based synthesis without
MRP (33.4 s). (c) Synthesizedimage, wp, = 25, we = 5, n = 5. Patch basedsynthesis with
MRP (1.0 s). (d) Input image. (e) Synthesizedimage, wp = 25, we = 5, n = 5. Patch based
synthesiswithout MRP (87.15s). (f) Synthesizedimage,wy = 25, we = 5, n = 5. Patch based
synthesiswith MRP (2.9 s). (g) Input image. (h) Synthesizedimage,wp = 25,we = 5,n = 5.
Patch basedsynthesiswithout MRP (86.4s). (i) Synthesizedimage,wp = 25,we = 5,n = 5.
Patch basedsynthesis with MRP (2.8 s). (j) Input image. (k) Synthesizedimage, wy = 25,
We = 5, n = 5. Patch basedsynthesis, without MRP (84.2s). (I) Synthesizedimage,wy, = 25,
We = 5, n = 5. Patch basedsynthesiswith MRP (2.8 s).
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(@) (b) (c)

Figure 4.10: Patch basedtexture synthesis with application of a MRP. Results (2). Size of
the input images200 200, size of the synthesized images200 200. For demonstration
purpose,imagesare initialized identically. In brackets time in seconds.(a) Input image. (b)
Synthesizedimage, wp = 25, we = 5, n = 5. Patch basedsynthesis without MRP (85.6 s).
(c) Synthesizedimage, wp = 25, we = 5, n = 5. Patch basedsynthesiswith MRP (2.8 s).

problems with highly deterministic textures can be seen. As already pointed out in the
introduction, our e orts are mainly basedin synthesizing highly stochastic textures, so no
further e orts to solve these problems were done.



Chapter 5

Mo di cations in the Application of
the Patch Based Synthesis

In the chapters from above, patch based texture synthesis was introduced and advanced.
Thereby in all thosee orts the initial, basicproceedingto synthesizea completely newtexture
from an input sample (Chapter 3) was followed. The synthesized texture | was initialized
with a randomly sampled block from I sample. Afterwards, a processingin raster scan order
was applied. All in | sampie available blocks could be usedfor the synthesis.

But other applications can be imagined. This chapter intro ducesand discusseghe by us
made modi cations to the application of the algorithm. The basic conceptsof the algorithm
consist further.

5.1 Initialization  of the Synthesized Image with the Input
Sample

In the previous approad (Section 3.2.2) the output texture | is initialized with a randomly
sampledblock from I sampie. FOr certain application areasa variation of this could be preferred.
Soit is sometimesdesired, not to generatea completely new texture |, but to expand the
input sample | sample t0 @ certain size. We do this by initializing the output texture | with
I sample (Figure 5.1 (a)) at the left, and enlarge | sampie With synthesized blocks to the right
(Figure 5.1 (b)). For this enlargemen a processingin raster scanorder is applied, where the
neighborhoods R of the already sampledblocks and the zoneof the width of we pixels at the
very right of of | sampie Sere as neighborhoods. The limitation to an expansionto the right
side can easily be bypassedby a rotation of the synthesized texture after a rst synthesis
through 90 and a following expansionof the synthesizedtexture with a new synthesis.

5.2 Avoidance of Mark ed Pixels

For certain applications it could be desired that the synthesizedimage | doesnot cortain
certain image areasor single pixels of | sampe. We solve this problem by neglecting all blocks
B Isample for synthesis, which cortain a pixel p 2 B of a certain, user de ned color C. So
the synthesis processis further applied to the setB = fB | sampeejp 2 B 6 Cg instead of
the whole input sample I sample. Undesired regionsor pixels have to be de ned manually by

39
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(a) (b)

Figure 5.1: Initialization of the output texture | with |sampie. (a) The output texture | is
initialized with |sampie. The yellow marked region of width we is used as neighborhood for
the following synthesis. (b) Synthesisin progress. The image is synthesized in raster scan
order, from top to bottom and from left to right.

@) (b) ()

Figure 5.2: Avoidanceof marked pixels. (a) Input sample(300 300), gray scale8 bit/pixel.
Dark region at the image boundary should be avoided. (b) The undesiredregion is marked
with C = black by the user. (c) Synthesizedimage (300 300). Elapsedtime for synthesis
243s.

the user. This is done by painting them in the color C (Figure 5.2).

5.3 Segmentation of Input Sample and Output Texture

Consequetly not only certain blocks should be avoided, but the user should be able to
de ne the segmemation of the synthesizedtexture. We have implemented a way to de ne a
segmemation of the output texture |, consisting of two segmetts, and synthesizel according
to the de ned segmetts.

5.3.1 Approac h

We partition manually the texture samplel sampie and the desired synthesizedtexture | into
two segmems. This is done by using two segmetmation shemesl| sample; seg and | seg, Signaling
the partitions of the textures. The segmemation sthemesconsist of a segmemation into two
dierent regionsS; and S, (Figure 5.3). The segmemation schemesmust assignead pixel
P2 lsample; | UNiquely to aregion Sy;S,. Further on for eat region S; S, must exist at least
one block B? I sample,» Which can completely be assignedto this region Sy; Sp.
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(b) (b) (©)

Figure 5.3: Partitioning of | sample and | into two segmets S; and Sy, using two segmetation
schemes. (a) Input samplelsample. The segmemation can easily be seen. (b) Segmemation

S, | S ~ m \D
E/% S, S,

] = [

Figure 5.4: Sampling of blocks dependert on the segmemation. The regions, to which the

block in I sampie (left) belongs,must be identical to the region, to which the block is sampled
in 1 (right).

In the following all blocks B° I sample @nd all to be sampled blocks B | are divided
into three sets G1; G2; G3. Set G; contains all blocks which are fully located in region S;.
Set G, contains all blocks which are fully located in region S,. All other blocks, which are
partially locatedin region S; and region S, are allocated to Gz. During the synthesisprocess,
only blocks B? are taken in consideration for sampling, which belongto the sameset as the
to be sampledblock B (Figure 5.4).

To enablean as exact as possiblematching of the synthesizedblocks to the segmeration
scheme at the boundary betweenS; and S, a new distance dseq is introduced. It considers
the di erent segmemation characteristics of the to be sampledblock B °and the scannedblock
B at the boundary.

dseg= d+ d(B;BY; = const;
whered = dmax: n (Section3.3.3)and d(B; B9 is an appropriate distance of the segmetations
of B and B
In the following the distance d(B;B9 is de ned. Let Bseg lseg@nd Beg  I'sample; seg
be two blocks, cortaining the segmemations of B and B in sizeand shape identical to the
blocks B, B® Further let Bgegk 2 Bseg and Bgegk 2 BJey be two elemerts of these blocks,
represering, to which region Sy, S, the according pixel of B and B ° belongs. We de ne the
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operation  to the elemens Bgsegk and Bgegk, so that

0 - ; 0
Bsegk Bsegk - O |f Bsegk Bsegk

and

So

X _
a= (A ! (Bsegk Bgegk)z)l_z;
k=1

where A is the number of processecelements B segk, Bgegk of a block. Note that the distance

d= 0 for all blocks B, B which are totally locatedin Sy, S,.

Moreover two dierent requiremerts could be found to synthesize blocks, which fully
belong to a region S;, S; or which belong to the boundary zone. For synthesizing blocks
at the boundary zoneit could be desired, that these blocks match as good as possiblethe
segmetmation boundary, with very lessstochastic variability, whereasfor blocks contained in
a region S;, S, a high stochastic variability could be desired. We meet these requiremerts
by introducing two di erent distance tolerancesdmax: n for all blocks B in G; and G,, and
dmax: no for all blocks B in Gz. Sodirectly and independertly on the other synthesizedblocks
the variability of the sampledblocks at the boundary can be de ned by the parameter n®

5.3.2 Free Parameters

Someparameters remain undeclared. The parameter regulatesthe in uence of the exact
boundary characteristic to the synthesis. Figure 5.5 showvs examplesfor various values of
We madegood experienceswith an = [1:5;2:5]. In our following approadeswe settherefore

= 2. Atoosmall doesnot take su cien tly in accourt the boundary characteristic. As
Figure 5.5(d) and (e) shaw, a smooth block transition of the sampledblocks is preferredto an
exact matching of the boundary, becausethe distance of the seamsis weighted too strong. An

= 2 producesgood results. In Figure 5.5 (f) a good matching of the boundary characteristic
can be seen. Problems with the boundary matching can only be obsened for the block at
the top of the boundary. In cortrast to that in the Figures 5.5 (g), (h) the distance for the
boundary characteristic is weighted too strong. A missing smooth transition of the sampled
blocks can be obsened, single blocks can easily be recognized. As also can be seen,for very
high the synthesis algorithm tends to produce stepsat the segmeration boundary.

For the parametersn and n® we refer to Section 3.3.4. The parameter n regulates the
stochastic variability of the output texture in the regions, which do not belong to the seg-
mentation boundary. We recommendn 5, but this value should be adapted to the desired
characteristic of the synthesizedtexture. Whereasthe parameter n®de nes the variability of
the segmemation boundary, this variability hasto be seencritically in aspect to the visual
quality of the synthesizedboundary. Therefore we recommenda smallern®that the variabilit y
of the chosenblocks doesnot have any negative impact to the segmetmation boundary. Good
results have beenmade with ann® 1.

5.3.3 Results

The algorithm producessegmered textures of a good visual delit y. Essetially for a good
characteristic of the synthesized boundary between the two segmers is the application of
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(€) (f) (9) (h)

Figure 5.5: Segmetation of input sample and output texture. Variations of . Sizeof the
images150 150, gray scale8 bits/pixel. wp = 7, we = 4, n = 5,n%= 1. Isometries of the
categoriesl and 2 applied. In brackets time in seconds.(a) Input texture. (b) Segmemation
of the input texture. (c) Segmemation of the output texture. (d) Synthesizedimage, = 0:5
(50 s). (e) Synthesizedimage, = 1:0 (51 s). (f) Synthesizedimage, = 2 (50 s). (9)
Synthesizedimage, = 3 (49s). (h) Synthesizedimage, = 5(515).
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(a) (b)

() (d)

Figure 5.6: Segmetation of input sampleand output texture. Results(1). Sizeof the images
300 300. w, = 25,Wwe = 5,n=5n%= 1, = 1. Isometries of the categories1 and 2
applied. Application of MRP. (a) Input texture. (b) Segmemation of the input texture. (c)
Segmemation of the output texture. (d) Synthesizedimage. Elapsedtime for synthesis 35 s.
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(a) (b)

() (d)

Figure 5.7: Segmetation of input sampleand output texture. Results(2). Sizeof the images
300 300, gray level, 8 bit/pixel. wp = 10,we = 5,n = 5,n°= 2, = 2. Isometries of the
categories1 and 2 applied. (a) Input texture. (b) Segmemation of the input texture. (c)
Segmemation of the output texture. (d) Synthesizedimage. Elapsedtime for synthesis598s.
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(@) (b)

(c) (d)

(€)

Figure 5.8: Segmemation of input sampleand output texture. Results(3). Sizeof the images
256 256, gray scale8 bits/pixel. w,= 7,we = 4, n = 5,n%= 1. Isometries of the categories
1 and 2 applied. (a) Input texture. (b) Segmetmation of the input texture. (c) Segmetation

of the output texture. (d) Synthesizedimage, = 1.5 (5595s). (e) Synthesizedimage, = 0
(560 s).
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isometriesto the algorithm. Only with this application it is possibleto synthesize segmena-
tion boundariesof not identical characteristics as the segmemation boundaries of the input
samples.

The synthesis algorithm for segmened textures was developed for highly stochastic tex-
tures with very smooth transitions betweenthe segmems. For these casesresults with a high
visual delit y are produced (Figure 5.6), and this is done with application of a MRP with
a low computational e ort. If the transitions have a boundary with a strong conrast, good
results only could be gained for these parts of the synthesized boundary, which also can be
found (e.g. transformed) in the boundary of the input sample. For all other parts of the
boundary the algorithm fails (Figure 5.7). E.g. a failing of the algorithm can be obsened
for very ne structures at the segmetation boundary (Figure 5.8). Further on for a satisfy-
ing synthesis of the segmemation boundary, the sizesof patch and neighborhood have to be
chosenvery small. This leadsto a lack of capturing bigger texels of the input sampleand of
transferring them to the output texture. Also an increasedcomputational e ort is causedby
this. Finally for imageswith a high contrast betweenthe two segmets, visual in delities are
intro duced by the blending (Figures 5.5, 5.8).

The visual in delities, introduced by blending, are a problem of the algorithm and can
only be advancedby a very small neighborhood we. Alternativ ely another block arrangement
method (e.g. [5]) could be considered.All other above mertioned problems have their source
in the limited number of blocks at the image boundary of the input sample | sampe. A block
based method can only sample a limited number of output characteristics from a limited
number of input characteristics. One solution to avoid visual in delities in the output texture
would be an adaptation of the desiredsegmemation boundary to the segmemation boundary
of the input sample. Whenewer a strict characteristic of the output segmemation boundary
is not necessaryan = 0 hasalso lead to good results. In this case,the exact boundary
characteristic is not regarded, and the highest priorit y of the algorithm is given in generating
smooth transition betweenthe sampledblocks. Figure 5.8 (e) has subjectively a higher visual
delit y than Figure 5.8 (d).

Synthesis with very small wy, is done to obtain a good matching to the segmemation
boundary. But it increasesthe synthesis time and it is not able to capture bigger texels.
Somemethods could be considered,to avoid these problems. Soit could be imagined to use
further on large wy, for texture synthesis of the blocks, which are not part of the segmeration
boundary. At the boundary the blocks could be scaleddown and synthesis of the boundary
zone could be done with the down scaledblocks. Another approad could be, to combine
pixel and patch basedsynthesis. So the image parts, which do not belongto the boundary,
rstly could be synthesizedwith patch basedtexture synthesis. The parts, which belongto
the segmemation boundary, then could be synthesizedwith the pixel basedsynthesis method
(Chapter 2). Soan exact matching of the segmemation boundary could be readed.
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Chapter 6

Conclusions and Perspectiv e

What conclusionscan be drawn from this work? It was demonstrated that patch basedtex-
ture synthesis is an appropriate method to synthesize textures. Good results have not only
beenobtained for highly stochastic textures, but alsofor very deterministic ones. Texel place-
mert of the input samplecan easily be caugh by the patch, whereasthe seamtransfers the
constraints of synthesizedblocks. Soa high visual delit y of the texture can be reaced. The
computational e ort of the patch basedtexture synthesisis largely improved in comparison
to the pixel basedmethod.

Neverthelessthe patch basedmethod hasstill problems. First, a trend to markable repe-
titions is obsenable. Second,the synthesizedtexture has an insu cien t variability. Further
on for somestructured textures the block boundariescan be seen,and the applied feathering
leadsto an smoothing along these boundaries. Finally, the computational e ort is still too
high.

Advancesin the computational cost could be gainedby the application of a multiresolution
imagepyramid to the texture analysis. With that the computational e ort could be minimized
in someorder of magnitude. But it is still highly dependert on the sizeof the input sample.
Further approadiesshould try to decreasethis dependencyfurther.

Our approadiesto a preverntion of repetitions only make sensefor highly stochastic tex-
tures. The algorithm works well for su cien tly large input samples. With respect to a very
low additional computational cost causedby this algorithm, the results are satisfying. But in
generala higher visual quality could be desired. Approachesin this direction could consider
the spatial distance of the potentially repeated blocks. Also approades, which exclude only
blocks with a striking feature, could be imagined.

A higher variabilit y of the synthesizedimage could be readed by the application of isome-
tries. The approac seamsreasonableand producesresults of an undiminished, high visual
quality. Also it could help to reducethe visibilit y of markable repetition by block transforma-
tions. But it causesa by the number of applied isometries multiplied computational e ort.
With this disadvantage the application of isometrieshasto be consideredvery well.

The synthesis algorithm is not only useableto synthesize completely new textures from a
given texture sample. By marking certain pixels in the sample as undesired, e ectiv ely the
input sample only was reduced. But this could be usedto create new, clean textures from
input sampleswithout disturbing artifacts. Another stepin this direction wasthe application
of texture synthesisto segmeted textures. Sonew segmeted textures could be created. The
algorithm works well for highly stochastic textures with no clear segmemation boundary. It
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fails for all strict deterministic boundaries,which do not have a complemerary in the input
sample. At this point the combination of patch and pixel basedtexture synthesis could lead
to better results.

Further applications of the algorithm can be imagined. Logical consequenceof the dis-
regarding of certain image parts for the synthesis of a completely new image is, to replace
theseimage parts directly within the image (cp. [8], [17]). We proposefor this casea combi-
nation of pixel and patch basedtexture synthesis. The patch basedmethod would be suited
for synthesis of larger areas, whereasboundary parts could be synthesized with pixel based
synthesis. The sameconsiderationsare valid for the synthesis of missing blocks in textures,
e.g. causedby transmission errors.

A direct application could be imagined for the intro duced and further advancedsynthesis
of segmetmations. Pictures, consisting of various textures, could be createdby a few samples.
Typical examplesfor this are landscapes. So e.g. varying landscapes could be synthesized
and usedin trick Ims or video games.In thesetwo application areasa trend to high realistic
pictures can be obsened.

Open question is still, if texture synthesis can make it into the domain of converntional
lossy sourcecoding, although the proposedapplication to trick Ims and video gamescould
lead us to this assumption. Until today it su ers from atoo lessdeterministic output texture,
with atoo varying visual delit y and atoo high computational cost. Sono satisfying solutions
e.g. for the sourcecoding of motion pictures can be produced.

Concluding it can be said that texture synthesis has great chancesfor application in the
future. Patch basedtexture synthesis has rstly shawvn a way to generate quickly textures
of a high quality. With the here introduced modi cations to the algorithm, some defects
could be remedied,and already someapplication areascould be found. But there still remain
possibilities to improve the algorithm and enableso a further distribution of this technique.
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App endix A

User Man ual

In the following, an user manual for the implemented functions of patch basedtexture syn-
thesis is provided. The implemertation was done by adding the functions to the already
existing software PdiWin32, which was created by the Departameno de Comunicacionesof
the university Universidad Politecnicade Valencia. The software was developed for Microsoft
Windows operating systems. It is assumedthat the readeris familiar in the usageof the basic
conceptsof the windows operating systems.

Two mernu erntries have beenadded to the pull down menu VENIS . The entry Patch
Based Synthesis providesthe possibilities, to synthesize new imagesfrom existing textures
samplesand to enlarge existing input samplesto the right by patch basedtexture synthesis.
The entry Segmentation Synthesis (P atch Based) providesthe possibility to synthesizea
de ned segmered texture from an input sampleand two segmetation sdiemesusing patch
basedtexture synthesis (Figure A.1). The entries are explained in the according sections
below.

A.1 Patch Based Synthesis

The meru entry Patch Based Synthesis can be found in the pull down menu VENIS .
It provides all in this work presenied possibilities to synthesize textures with patch based
texture synthesis, exceptfor synthesis of segmemations. Pleasenote that the texture sample,
from which should be sampled,hasto be openedand selectedbefore choosingthe menu entry.
The opening of graphic les can be donein the pull down menu Arc hiv o, entry Abrir . The
le then can be openedwith the common windows dialog.
After having chosenthe mernu eriry, the dialog box VENIS: Patch Based Texture

Synthesis appears(Figure A.2 (a)). This dialog box servesfor choosingdi erent applications
and to modify parameters. In the following the ertries are preseried:

Patch size: Setsthe patch size wy, which is applied in the synthesis process. The default
value is setto 25. The input box expectsan integervaluel wp, 99999.

Seam size: Setsthe size of the neighborhood (seam) we, which is applied in the synthesis
process.The default value is setto 5. The input box expectsan integervaluel we
99999.

Num ber of eval. Blo cks: Setsthe number of blocks n usedas distance tolerance dmax: n-
From the n blocks with minimum distance d the sampled block is chosenrandomly.
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Figure A.1: PdiWin32 shows after starting an empty desktop. The two ertries Patch Based
Synthesis and Segmentation Synthesis (P atch Based) wereaddedto the menu VENIS .

(b)

(a) (©)

Figure A.2: (a) The dialog box VENIS: Patch Based Texture Synthesis. (b) The dialog
box Patch Based Texture Synthesis: Output Size. (c) The dialog box Patch Based
Texture Synthesis: Output Size.
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Note that this distance tolerance would only be applied, if the eld Bound: Best
Blo cks is selected. The default value is 5. The input box expects an integer value
1 n 99999.

Epsilon: Setsthe as distance tolerance dmax: according to Liang [13]. Note that this
distance tolerancewould only be only applied, if the eld Bound: Epsilon is selected.
The default value is 0.1. Expects a positive oat value.

Button group Bound: In this button group the choice betweenthe two preserted distance
tolerancesdmax: n and dmax: can be set (seealso Section 3.3.4):

Best Blo cks: Selectsthe distancetolerancedmax: n- The sampledblock is chosenfrom
the n best blocks. The parameter n can be speci ed in the input box Num ber of
eval. blo cks.

Epsilon Bound: Selectsthe distance tolerance dyax; . The parameter can be spec-
ied in the input box Epsilon . If no block matchesthe -criterion, the best block
is sampled.

The distancetoleranceis by default setto Best Blo cks.

Usage of isometries (180 degrees): Isometries of the category 1 (compatible 180) are
applied to the blocks consideredfor sampling (Section 4.1), if the ched box is selected.

Usage of isometries (90 degrees): Isometries of the category 2 (compatible 90) are ap-
plied to the blocks consideredfor sampling (Section 4.1), if the ched box is selected.

Discard Blo cks with Black Pixels: All blocks of the input sample,which cortain at least
oneblack pixel (all RGB componerts 0) are discardedfor synthesisprocess,if the chedk
box is selected(Section 5.2).

Try to Avoid Rep etitions: The in Section4.2 introduced algorithm to prevert repetition
of sampledblocks is applied, if the ched box is selected.

Button group Output Mo de: In this button group, the desired output mode can be se-
lected.

Create New Image: The output texture is initialized with a randomly chosenblock
from the input sample. Any userde ned sizescan be chosenas output size. This
is the basic processingof the algorithm, introducedin Chapter 3.

Keep Existing Image: The output texture is initialized with the input sample. The
output texture consistsof an to the right enlargedinput sample (Section 5.1).

The output mode is by default setto Create New Image .

Button group Program Mo de: With this button group the mode of the texture synthesis
can be selected.

Standard Mo de: Texture synthesisis done without application of a MRP.
Pyramid Mo de: Texture synthesisis done with application of a MRP (Section 4.3).

The program mode is by default setto Standard Mo de.
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The pressingof the OK -button acceptsthe made settings, whereasa pressingof the Cancel -
buttons discardsthem and returns to the Pdiwin32 desktop.

In the following dialog the user hasto specify the output size of the texture. Depending
on the setting madein the button group Output Mo de, oneof the following dialogsappears.

Create New Image selected: The dialog Figure A.2 (b) appears. Within this dialog width
and height of the synthesizedimage can be de ned within the input boxesWidth and
Heigh t. Both default values are set to 200. Both input boxes expect integer values
1 value 99999.

Keep Existing Image selected: The dialog Figure A.2 (c) appears. Within this dialog
the enlargemen of the input sampleto the right can be speci ed within the input box
Output Picture Enlargemen t (x-direction) . The default value is setto 100. The
input box expectsan integervaluel value 99999.

By con rming this dialog with OK , the synthesis processis started. When completed, the
output picture is copied to the desktop of PdiWin32. Note that the synthesis processcan
last up to seweral hours, depending on the sizeof the input sample, sizeof the output sample
and applied isometries. Synthesizedimagescan be saved using the Guardar and Guardar
como... functions from the pull down menu Arc hiv o.

A.2 Segmentation Synthesis (Patch Based)

Also the menu eriry Segmentation Synthesis (P atch Based) can be found in the pull
down menu VENIS . It providesthe possibilities to synthesizede ned texture segmetmations
(of max. two segmeirs) by patch basedtexture synthesis. Before applying the function, three
input images are neededto be opened. These imageshave to be in size and color format
identical (i.e. all have to be color or gray scale). The needed les are:

Input sample: The sampleimage, from which is sampled.

Segmentation of the input sample: The Segmeration of the input samplehasto consist
of two colors, black and white. It hasto represen the segmemation of the input sample,
painting one segmen black, and the other segmemn white. Note that the segmetation
schemehasto have the samecolor format asthe input sample, alsoif containing only
two colors.

Segmentation of the output texture: This segmemation schemehasto represen the de-
sired segmemation of the output texture. As the segmemation sdeme of the input
sample, it hasto consist of two di erent colors, black and white. Pleasenote that the
segmemation schemehasto bein sizeand color format identical to the input sample.

Theseimageshave to be openedin the PdiWin32 desktop. This can be done with the erry
Abrir  from the pull down menu Arc hiv o. Further on the input samplehasto selectedbefore
cortinuing.

After having chosenthe menu enry Segmentation Synthesis (P atch Based) from
the pull down meru, the dialog box Select Other Image (Figure A.3 (a)) appears. In this
dialog box the segmetmation of the input sample has to be selected. After con rming this
with OK , another dialog box Select Other Image Figure A.3 (b)) is preseried, in which
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@)

(b) (©)

Figure A.3: (a) Dialog box Select Other Image to selectthe segmetation of the input
sample. (b) Dialog box Select Other Image to selectthe segmetation of the output
texture. (c) Dialog box VENIS: Segmentation Synthesis (P atch Based)
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the segmetation of the output samplehasto be chosen. Note, if the segmemation sthemes
do not appear in these boxes, pleaseensurethat they are in size and color format identical
to the input sample. This can easily be done with the function Informacion from the pull
down menu Ver.

After selecting the appropriate imagesand con rming the selectionwith OK , the dia-
log box VENIS: Segmentation Synthesis (P atch Based) (Figure A.3 (c)) is shown to
the user. Within this dialog box all relevant parameters for segmemation synthesis can be
modi ed.

Patch Size: Setsthe patch size wy, which is applied in the synthesis process. The default
value is setto 25. The input box expectsan integervaluel wp, 99999.

Seam Size: Setsthe size of the neighborhood (seam) we, which is applied in the synthesis
process.The default valueis setto 5. The input box expectsan integervaluel we
99999.

Input box Num ber of Eval. Blo cks: Setsthe number of blocks n usedfor the distance
tolerance dmax; n- From the n blocks with minimum distance d the sampled block is
chosen randomly. The default value is 5. The input box expects an integer value
1 n 99999. This distancetoleranceis only applied to all blocks, which are sampled
fully to a segmenm of the segmemation.

Num ber of Eval Blo cks at Bound: As above, this input box setsthe number of blocks
n® usedfor the distance tolerance dmax: n. From the n®blocks with minimum distance
d the sampledblock is chosenrandomly. The default valueis 1. The input box expects
anintegervaluel n 99999. This distance toleranceis applied to all blocks, which
are sampledto the segmemation boundary.

Alpha: The parameter regulatesthe in uence of the the boundary segmemation to the
distance calculation (Section 5.3). This is only valid for all blocks, which are sampledto
the boundary of the segmers. The default value is 2.0. Expectsa positive oat value.

Usage of Isometries (180 Degrees): Isometries of the category 1 (compatible 180) are
applied to the blocks consideredfor sampling (Section 4.1), if the ched box is selected.

Usage of Isometries (90 Degrees): Isometriesof the category 2 (compatible 90) are ap-
plied to the blocks consideredfor sampling (Section 4.1), if the ched box is selected.

Button group Program Mo de: With this button group the mode of the texture synthesis
can be selected.
Standard Mo de: Texture synthesis is done without application of a MRP.
Pyramid Mo de: Texture synthesisis done with application of a MRP (Section 4.3).

The program mode is by default setto Standard Mo de.

By conrming the chosen settings with the OK button, the synthesis processis started.
An image according to the output segmemation scheme, sampled from the input sampleis
synthesized. The output texture is in sizeand color information identical to the input sample.
It is nally copiedto the PdiWin32 desktop. Pleasenote that the synthesis processmight
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last up to seweral hours, depending on the size of the input sample and the chosensettings.
Synthesizedimagescan be saved using the Guardar and Guardar como... functions from
the pull down menu Arc hiv o.
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App endix B

Technical documentation of the
Implemen ted Software

This appendix describesthe implemented code. First, generalinformations are given. Second,
the two main functions are preseried, and their usageis described. Finally, all visible functions
are documerted.

The code description is grouped by les. For the application of ead function the according
header le (\lename.h") hasto be included.

All in this appendix preseried code is pseudocode. It follows the C++ code syntax, but
i.e. it is not complete. At the beginning of ead code example,the to beincluded header les
are preserned:

#include <stdio.h>
#include "headerfile.h"

Soit is shoved that the header les "stdio.h" "header le.h" have to beincluded. Further on
it is signaledthat the le "stdio.h" is part of the C++ standard library by the usageof < >,
Afterwards, brackets shav the beginning and ending of the function.

{
}

As far as not otherwise mentioned, the preseried (pseudo code) functions return an integer
value int .

All in the function usedvariables are declaredasin the C++ syntax. The usageof ...
signalsthe leave out of certain function parts, i.e. the memory allocation or initialization of
earlier declaredvariables. This is only done with respect to a compact description. The left
out parts are mertioned in the text and are already described earlier.

B.1 Documentation

B.1.1 General

The code is written in C++ for Microsoft Windows (32 bit) systems.It is provided as source
code. The integration into the existing software PdiwWin32 is done via the Borland C++
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dewelopmert ervironment in the le jppatchtexturesynthesis.c pp, whose description is
not part of this documenation. All other les are independert on this project and are
written in standard C++.

The code was written with respect to a safeand easyerror handling. Philosophy behind
the written functions is, to give bad an error code asan integer value. In all casesof an error
free, normal termination of the function, the function returns NO_ERROR all other casesan
error code accordingto the Victor Image Processinglibrary is returned. With respectto this,
the function should be called in the following manner:

int errorHandler;

if(NO_ERROR= (errorHandler = function(...))){
errorHandling(errorHand ler) ;
return errorHandler;

}

The usederror codesare:
NQERRORunction is terminated normally. No error occurred during execution.

BADMENError with memory managemen occurred. The function is not able to allocate
memory or insu cien t memory for execution allocated.

BADRANGKariable cortains invalid value.

All the code was written for a Microsoft Windows (32 bit) operating system. In general
it is not portable, mainly becausethe memory allocation was done with appropriate windows
functions.
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B.1.2 jptexturepatc h.h, jptexturepatc h.cpp

These les

provide the main patch basedtexture synthesis function:

int texture _patch(imgdes *srcimg, imgdes *desimg, datapatch varpatch)

Description:  The function synthesizesan image imgdes desimg using patch based

textu

re synthesis from the input sample imgdes srcimg with the given parameters

datapatch varpatch . The parametersare the following:

struc

t datapatch{

long patch;

long seam;

long numEvalBlocks;
float epsilon;

int
int
int
int
int
int

isometries_180 _true;
isometries_90 _true;
createNewlmageTrue;
discardBlackBlockTrue;
useModePyramidTrue;
avoidRepetitionsTrue;

findBestBound bound;

long patch Sizeof the patch (wy), quadratic. Expectsa long integer value > O.
long seamSizeof the seam(wg). Expectsa long integer value > 0.

long numEvalBlocks Number of n best blocks, which are regardedfor synthesis
(distance tolerance dmax: n, Section 3.3.4). Expectsa long integer value > 0. Only
valid if findBestBound == BOUNDUMBERIsesetto O.

float epsilon of distancetolerancedmax: (Section3.3.4). Expectsa oat value
> 0. Only valid, if findBestBound == BOUNEPSILONelsesetto 0.

int isometries _180_true Application of isometriescompatible to 180 (isometries
category 1, Section4.1), if TRUEExpects TRUBr FALSE

int isometries _90_true Application of isometries compatible to 90 (isometries
category 2, Section4.1), if TRUEExpects TRUBr FALSE

int createNewlmageTrue A completely new image is created, if TRUEIf FALSE
the existing image is enlarged. Expects TRUBr FALSE

int discardBlackBlockTrue If TRUEall blocks containing black pixels are dis-
carded for synthesis process(Section 5.2). Expects TRUEr FALSE

int useModePyramidTruelf TRUEa MRP is applied to the synthesis process.
Pleasenote that in this casethe size of patch and seamhave to be chosenlarge
enough( 4). If FALSEthe synthesisis done without MRP (Section 4.3).

int avoidRepetitionsTrue If TRUEadditionally the algorithm for repetition pre-
vertion is applied (Section 4.2). Expects TRUBOr FALSE
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{ findBestBound bound Selectsthe distance tolerance, which is usedfor synthesis
process.A setting to findBestBound BOUNEPSILOelectsthe distancetolerance
dmax: , Whereasa setting to findBestBound BOUNDNUMBESelectsthe distance
tolerance dmax: n (Section 3.3.4). Expects BOUNBEPSILOMNIr BOUNNUMBER

Sizesand color information of the output imageshave to be provided by the initialized
imgdes srcimg and imgdes desimg. The function returns an error code.

Usage: In the following example, a new texture imgdes outTexture of 300 300 is
synthesizedfrom imgdes inTexture . Patch sizeis setto 25, seamsizeto 5. Distance
tolerance dmax: n is applied, n is set to 4. No additional isometries are applied, but
MRP. No application of repetition prevertion, or discarding of certain pixels (blocks
containing black pixels) is used.
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#include <stdio.h>
#include ‘"vicdefs.h"
#include ‘"vicdef.h"
#include "jpmyerror.h"
#include "jptexturepatch.h”
{

int errorHandler;

imgdes inTexture;

/I read out, if the input texture is color or gray scale

/I value, how many bits/pixel are needed is saved in tmpBpps
/[ needed to allocate buffer for outTexure

int tmpWidth, tmpHeight, tmpBpps;

CalcularParametros(&inTex ture , &tmpWidth, &tmpHeight, &tmpBpps);

/I image outTexture declared

imgdes outTexture;

if(NO_ERROR=(errorHandler
allocimage(&outTexture,
fprintf(stderr, "Unable
return BAD_MEM,;

/[ allocation
datapatch synthesisData;
synthesisData.patch
synthesisData.seam

synthesisData.numEvalBloc ks
synthesisData.epsilon
synthesisData.isometries_ 180 _true
synthesisData.isometries_ 90 _true
synthesisData.createNewlm ageTrue
synthesisData.discardBlac ~ kBlo ckTrue

synthesisData.useModePyra midTrue
synthesisData.avoidRepeti  tion sTrue
synthesisData.bound
if(NO_ERROR= (errorHandler =
texture_patch(&inTexture
fprintf(stderr, "Error
return errorHandler;

&outTexture,
at texture_patch()");

and initialized

300, 300, tmpBpps))){
to alloc

for outTexture");

of values to datapatch synthesisData

25;

5;

4

0; /I not used
FALSE;

FALSE;

TRUE;

FALSE;

TRUE;

FALSE;
BOUND_NUMBER

synthesisData))){
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B.1.3 jpsegmentsynth.h, jpsegmentsyn th.cpp

These les provide the main segmemation synthesis function, using patch basedtexture syn-
thesis:

int segmentSynth(imgdes *origlmage, imgdes *inputSegmentation, imgdes
*outputSegmentation, imgdes *outputimage, dataSegmentSynth *varSegmentSynth)

Description:  The function provides the possibility to synthesizea segmetned texture
imgdes outputimage with a segmemation imgdes outputSegmentation from an input
sampleimgdes origlmage with according segmemation imgdes inputSegmentation .
The segmeration must consistof two di erent segmers, marked with black and white.
Further on the segmemations must be in size and color mode identical to imgdes
origimage . As distance tolerance dmax, the distance tolerance dmax: n is used (3.3.4).
The parameters of the synthesis can be set in dataSegmentSynth varSegmentSynth,
which is in the following described.

struct dataSegmentSynth{
long patch;
long seam;
long numEvalBlocks;
long numEvalBlocksAtBound;
float alpha;
int isometries_180_true;
int isometries 90 true;
int usePyramidModeTrue;
%
typedef struct dataSegmentSynth dataSegmentSynth;

{ long patch Sizeof the patch (wyp), quadratic. Expectsa long integer value > O.
{ long seamSizeof the seam(w,). Expectsa long integer value > 0.

{ long numEvalBlocks Number n bestblocks, which areregardedfor synthesis(Sec-
tion 3.3.4). Expects a long integer value > 0. This value is only valid for all
synthesizedblocks, which do not touch the segmemation boundary.

{ long numEvalBlocksAtBound Number n®best blocks, which are regardedfor syn-
thesis (Section 3.3.4). This value is only valid for all synthesized blocks, which
touch the segmemation boundary. Expectsa long integer value > 0.

{ float alpha Parameter , moderates the in uence of the segmemation to the
synthesis processat the segmemation boundary (Section 5.3). Expects a oat
value O.

{ int isometries _180_true Application of isometriescompatible to 180 (isometries
category 1, Section4.1), if TRUEExpects TRUEr FALSE

{ int isometries _90_true Application of isometries compatible to 90 (isometries
category 2, Section4.1), if TRUEExpects TRUEr FALSE

{ int useModePyramidTruelf TRUEa MRP is applied to the synthesis process.
Pleasenote that in this casethe size of patch and seamhave to be chosenlarge
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enough( 4). If FALSEthe synthesisis donewithout MRP (Section 4.3). Expects
TRUBr FALSE

The function returns an error code.

Usage: In the following example,the usageof segmentSynth() is demonstrated. The
texture imgdes outTexture , with segmemation imgdes outSegmentation is synthe-
sizedfrom the input sampleimgdes inTexture , with according segmemation imgdes
inSegmentation . Patch sizeis set to 10, seamsizeis set to 4. Isometries of all two
categoriesare applied. No MRP is applied. is setto 2.0. n is setto 5, and n° (at the
segmemation boundary) is setto 1.
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#include <stdio.h>

#include "vicdefs.h"

#include "vicdef.h"

#include "jpsegmentsynth.h”

{

int errorHandler;

imgdes inTexture, inSegmentation, outSegmentation.

/Il read out, if the input texture is color or gray scale

/I write how many bits/pixel to tmpBpps

/I needed to allocate right buffer for outTexure

int tmpWidth, tmpHeight, tmpBpps;

CalcularParametros(&inTex ture , &tmpWidth, &tmpHeight, &tmpBpps);

/I allocate memoryto outTexture

imgdes outTexture;

if(NO_ERROR= (errorHandler =
allocimage(&outTexture,  tmpWidth, tmpHeight, tmpBpps))X{
fprintf(stderr, "Unable to alloc for outTexture");
return BAD_MEM;

}

/I initialize dataSegmentSynth synthesisData
dataSegmentSynth synthesisData;
synthesisData.patch = 10;

synthesisData.seam = 4
synthesisData.numEvalBloc ks =5
synthesisData.numEvalBloc ksAtBourd = 1,
synthesisData.alpha = 2.0;
synthesisData.isometries_ 180 true = TRUE;
synthesisData.isometries_ 90 _true = TRUE;
synthesisData.usePyramidM odeTrue = FALSE;

if(NO_ERROR= (errorHandler =
segmentSynth(&inTexture, &inSegmentation, &outSegmentation,
&outTexture, &synthesisData))){
fprintf(stderr, "Error at segmentSynth");
return errorHandler;
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B.1.4 jpmyimage.h, jpm yimage.cpp

These les provide a to texture synthesis adapted image represenation and handling. Image
represertation is done with the type mylmage Color imagesthereby are represened in the
three RGB componerts. Switching betweencolor and gray scaleimagesis done via

enumcolorMode{BLACKWHITECOLOR};

where BLACKWHITEpreserts pictures with 256 gray levels/pixel and COLOIRepreserts color
images.

Typ e mylmage
The type is mylmageis de ned as followed:

struct mylmage{
unsigned char *imageBufferr;
unsigned char *imageBufferG;
unsigned char *imageBufferB;

colorMode mode;
unsigned long maxBufferSize;
long width;

long height;

HGLOBAhImageBufferR;
HGLOBAhImageBufferG;
HGLOBAhImageBufferB,;
HGLOBAhMylmage;

%

typedef struct mylmagemylmage;

unsigned char *imageBufferR Pointer to an array of unsignedchar, cortaining the R
componert of a color image, asimage of 256 gray levels. If the imageis gray level, this
bu er contains the image of 256 gray levels. The array hasthe size of maxBufferSize .
The image hasthe sizeof width  height , andis lled in the array in raster scanorder,
from top to bottom and from left to right (i.e. the point (0,0) is the upper left corner
of the image). Sothe point (x,y) can be accessedy imageBufferR[y*width + X].

unsigned char *imageBufferG Pointer to an array of unsignedchar, corntaining the G
componert of a color image. The pointer is NULL for all gray scaleimages. Processing
as above.

unsigned char *imageBufferB Pointer to an array of unsignedchar, containing the B
componert of a color image. The pointer is NULL for all gray scaleimages. Processing
as above.

colorMode modeColor mode of the image. A colorMode == COLORarks a colorimage
in RGB componernts, whereascolorMode == BLACKWHIT&arks a gray scaleimage.

unsigned long maxBufferSize Size of the allocated image bu ers imageBufferR,
imageBufferG, imageBufferB . Note, if the image is allocated as gray scale(mode==
BLACKWHIT,EBhe image bu ers imageBufferG and imageBufferB are not allocated,
but NULL.
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long width Width of the image cortained in mylmage Value is set when mylmageis
initialized (not when allocated!).

long height Height of the image contained in mylmage Value is set when the image
is initialized (not when allocated!).

HGLOBAhImageBufferR Windows memory handler. For allocating and freeing mem-
ory. Should not be accessed!

HGLOBAhImageBufferG Windows memory handler. For allocating and freeing mem-
ory. Should not be accessed!

HGLOBAhImageBufferB Windows memory handler. For allocating and freeing mem-
ory. Should not be accessed!

HGLOBAbmylmageWindows memory handler. For allocating and freeing memory.
Should not be accessed!

Allo cating and Freeing Memory of mylmage

int createMylmage(mylmage **self, long maxWidth, long maxHeight, colorMode
mode)

Description:  Allocates memory to a pointer of the image self of type mylmage
Afterwards an image of the maximum width long maxWidth maximum heigh long
maxHeight and of the color format colorMode modecan besavedin self . The function
returns an error code.

Usage: In the following example, memory to a color image testimage of the max.
width of 100 and the max. height of 50 is allocated.

#include <stdio.h>
#include "jpmyerror.h"
#include "jpmyimage.h"

{
int errorHandler;// error handler
mylmage *testimage; /l declaration of the pointer to mylmagetestimage

/I allocating memoryto testimage

/I max. width 100, max. height 50, color image

if(NO_ERROR= (errorHandler =
createMylmage(&testimag e, 100, 50, COLOR))){
fprintf(stderr, "Error when creating testimage.");
return errorHandler;
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int destroyMylmage(mylmage *self)

Description:  Freesthe memory allocated to mylmageself . The function returns an
error code.

Usage: In the following, the memory, allocated to testimage, is freed.

#include <stdio.h>
#include "jpmyerror.h"
#include "jpmyimage.h"
{

int errorHandler,;
mylmage *testimage;

if(NO_ERROR= (errorHandler = destroylmage(testimage)) ){
fprintf(stderr, "Error when destroying testimage.");
return errorHandler;

int mylmagelnfo(mylmage *image, long *width, long *height, colorMode *mode)

Description:  Provides information about the created image mylmageimage. Writes
values of the image width, image height and the color mode to long width, long
height , colorMode mode The function returns an error code.

Usage: In the following example, the width, height and color mode of testimage are
written to long testWidth , long testHeight , colorMode testMode.

#include <stdio.h>
#include "jpmyerror.h"
#include "jpmyimage.h"
{

int errorHandler;
mylmage *testimage;

long testWidth, testHeight;
colorMode testMode;

if(NO_ERROR= (errorHandler =
mylmagelnfo(testimage, &testWidth, &testHeight, &testMode)))}{
fprintf(stderr, "Error at mylmagelinfo.");
return errorHandler;
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Converting images to/from the Victor Image Library from/to mylmage

Two functions are provided to cornvert imagesto the format imgdes from the Victor Image
Library to mylmageand vice versa.

int copylmage2Mylimage(imgdes*inimage, mylmage*outimage, long width, long
height, colorMode mode)

Description:  Copies an image imgdes inlmage of the width width , height height
and color mode modefrom the format imgdes (Victor Image Library. Seethere for
details) to mylmageoutlmage. The userhasto initialize width , height and mode The
function returns an error code.

Usage: In the following, the colorimageimgdes viclmage of the width 100, height 50
is copiedto mylmagetestimage . Before copying, memory is allocated to testimage .

#include <stdio.h>
#include "vicdefs.h"
#include "jpmyerror.h"
#include "jpmyimage.h"
{

int errorHandler;
imgdes *viclmage;

mylmage *testimage;

/I allocating memoryto testimage

/I max. width 100, max. height 50, color image

if(NO_ERROR= (errorHandler =
createMylmage(&testimag e, 100, 50, COLOR))X
fprintf(stderr, "Error when creating testimage.");
return errorHandler;

}

/I copying imgdes viclmage to testimage

if(NO_ERROR= (errorHandler =
copylmage2Mylmage(vicimage, testimage, 100, 50, COLOR)){
fprintf(stderr, "Error when copying testlmage.");
return errorHandler;
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int copyMylmage2Image(mylmag *inlmage, imgdes *outimage, long *width, long
*height, colorMode *mode)

Description: Copiesan image mylmageinimage to imgdes outlmage. Width, height
and color mode are written to long width , long height , colorMode mode The func-
tion returns an error code. Pleasenote, that su cien t memory hasto be allocated to
outimage.

Usage: In the following, the copying of the image mylmagetestimage to the image
imgdes viclmage is demonstrated.
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#include <stdio.h>
#include "vicdefs.h"
#include "jpmyerror.h"
#include "jpmyimage.h"
{

int errorHandler;
mylmage *testimage;

long tmpWidth, tmpHeight;
colorMode tmpMode;

if(NO_ERROR= (errorHandler =
mylmagelnfo(testimage, &tmpWidth, &tmpHeight, &tmpMode))){
fprintf(stderr, "Error at mylmagelnfo");
return errorHandler;

}

/[ an image of Victor Image Libary has to be allocated.

/I See Victor Image Libary for details

int vicBits = 8;

iftmpMode == COLOR)
vicBits = 24;

}

imgdes viclmage;

if(NO_ERROR= (errorHandler =
allocimage(&viclmage, tmpWidth, tmpHeight, vicBits))){
fprintf(stderr, "Error allocating memoryto viclmage.");
return errorHandler;

}

long tmpWidth, tmpHeight;
colorMode tmpMode;

if(NO_ERROR= (errorHandler =
copyMylmage2lmage(testl mage &viclmage, &tmpWidth,
&tmpHeight, &tmpMode))}{
fprintf(stderr, "Error copy image to testlmage");
return errorHandler;
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Copying and Pasting Blo cks from/to mylmage

int getBlock(mylmage *srclmage, mylmage*block, long index i, long index j,
long size ., long size )

Description:  Copiesa block from mylmagesrcimage to mylmageblock . The upper
left cornerof block in srclmage isindex ., index j ). The block hasa width of size i
and a height of size j . Note that the block hasto be fully in srcimage. The function
returns an error code.

Usage: In the following, a block mylmagesrcBlock of width 40 and height 20is copied
from mylmagesrcimage. The upper left corner of the block in srcimage, from which
it is taken, is at (15,10).

#include <stdio.h>
#include "jpmyerror.h"
#include "jpmyimage.h"
{

int errorHandler;
mylmage*srclmage;

long tmpWidth, tmpHeight;
colorMode tmpMode;

if(NO_ERROR= (errorHandler =
mylmagelnfo(srcimage, &tmpWidth, &tmpHeight, &tmpMode))X{
fprintf(stderr, "Error at mylmagelnfo.");
return errorHandler;

}

mylmage *srcBlock;

if(NO_ERROR= (errorHandler =
createMylmage(&srcBlock, 40, 20, tmpMode)))®{
fprintf(stderr, "Error allocating for srcBlock.");
return errorHandler;

}

if(NO_ERROR= (errorHandler =
getBlock(srclmage, srcBlock, 15, 10, 40, 20))¥
fprintf(stderr, "Error copying block from srclmage.");
return errorHandler;
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int fillPatchinimage(mylmage  *block, mylmage*destimage, long patchWidth, long
patchHeight, long seam, long destl, long destJ, int blendingTrue)

Description:  Fills mylmageblock into mylmagedestimage. The block consists of
a patch of a width of long patchWidth and a height of long patchHeight . It is
covered with a seamof sizelong seam The upper left corner of the patch is lled to
(destl , destd). If blendingTrue == TRUEthe feathering is usedto for the upper and
left seamregion. If blendingTrue == FALSEthe outer seam/2 pixels are kept from
destimage, and the other pixels are overwritten with pixels from block . This behavior
doesnot a ect the pixels in the patch. Note that the function fillPatchinimage()
doesautomatically considera correct edgehandling. Soonly (destl , destJ) hasto be
inside of destimage. Whenewer a seamor parts of the patch would exceeddestimage,
this is takeninto accourt, and theseparts are not copied. The function returns an error
code.

Usage: In the following, it is demonstrated, how to Il a block mylmagetestBlock
consisting of a patch of 25 25, with a seamof 5 into the image mylmage*outimage .
The upper left corner of the patch is (0,0).

#include <stdio.h>
#include "jpmyerror.h"
#include "jpmyimage.h"
{

int errorHandler;
mylmage *testBlock;
mylmage *outimage;

if(NO_ERROR= (errorHandler =
fillPatchinimage(testBlo ck, outlmage, 25, 25, 5, 0, 0, TRUE)X
fprintf(stderr, "Error filling block in image.");
return errorHandler;
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B.1.5 jpisometries.h, jpisometries.cpp

int getlsometry(mylmage *inBlock, mylmage*outBlock, isometType isometry)

Description:  The function applies the isometry isometType isometry to the image
mylmageinBlock and copiesthe result to mylmageoutBlock . The imageshave to be
quadratic. The function returns an error code. The following isometriescan be applied
(in brackets equivalerts to Section4.1):

{ isometType IDENTApplies the isometry identity (0. isometry) to the block.

{ isometType REFLECT_VERTICAtplies anorthogonalre ection alout mid-vertical
axis (1. isometry) to the block.

{ isometType REFLECT_HORIZONApplies an orthogonalre ection about mid-hori-
zontal axis (2. isometry) to the block.

{ isometType REFLECT_1ST_DIAGOMAplies an orthogonal re ection atout rst
diagonal of black (3. isometry).

{ isometType REFLECT_2ND_DIAGOA#lies an orthogonal re ection atout second
diagonal of black (4. isometry).

{ isometType ROTATEO9Applies a rotation around center of black, through+90 to
the block (5. isometry).

{ isometType ROTATE18A8pplies a rotation around center of black, through +180
to the block (6. isometry).

{ isometType ROTATE27Applies a rotation around center of block, through-90 to
the block (7. isometry).

Usage: The following example demonstrates the allocation of su cien t memory to
mylmagerotatedTestBlock , and afterwards the application of a rotation around the
certer of the block through +180 to mylmagetestBlock . The result is copied to
mylmagerotatedTestBlock
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#include <stdio.h>
#include "jpmyerror.h"
#include "jpisometries.h”
#include "jpmyimage.h"
{

int errorHandler;
mylmage *testBlock;

long tmpWidth, tmpHeight;
colorMode tmpMode;

if(NO_ERROR= (errorHandler =
mylmagelnfo(testBlock,  &tmpWidth, &tmpHeight, &tmpMode))){
fprintf(stderr, "Error at mylmagelnfo.");
return errorHandler;

}

mylmage *rotated TestBlock;

if(NO_ERROR= (errorHandler =
createMylmage(&rotatedTe stBl ock, tmpWidth, tmpHeight, tmpMode)))}{
fprintf(stderr, "Error allocating for rotatedTestBlock.");
return errorHandler;

}

if(NO_ERROR= (errorHandler =
getlsometry(testBlock, rotatedTestBlock, n ROTATE180))){
fprintf(stderr, "Error applying isometry to testBlock.");
return errorHandler;
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B.1.6 jpndblo cks.h, jpndblo cks.cpp
Functions to Search the Next Sampled Blo ck
int findBestBlock(databest *varbest, databestOut *outbest, int extSwitch);

Description:  The function seartiesthe next block, which hasto be sampledfor patch
basedtexture synthesis. Input parametersare given via databest varbest , output pa-
rametersare written to databestOut outbest . int extSwitch signalsto the function,
if the next block hasto be placedat the upper border of the output image (extSwitch

= 1), at the left border (extSwitch = 2) or at another place (extSwitch = 0). In the
following, the structures databest and databestOut are explained:

{ struct databest

struct databest{
findBestMode opMode;
findBestBound opBound;
float epsilon;
long numEvalBlocks;

long seam;

long patch;

long numBlocks;

int isometries_180_true;
int isometries_90 _true;
int isometriesFactor;

mylmage *rightColumn;
mylmage *lowerRow;

float alpha;
float *error;
float *sort_error;

mylmage *origlmage;

mylmage *inputSegmentation;
mylmage *outputSegmentation;
mylmage *origBlock;

mylmage *mutantBlock;
mylmage*schemeBlockl;
mylmage *schemeBlock?2;
mylmage *schemeBlocks3;
regions findRegion;

regions *classifiedBlocks;

int normValue;
int discardBlackBlockTrue;
int avoidRepetitionsTrue;

imageEvaluation *origimageEval;

findBestMode opMode Two operation modescanbe applied to findBestBlock
findBestMode MODHEXTUREPAT@&bpliesthe mode for patch basedtexture
synthesis, without segmering the in- and output images.
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findBestMode MODBSEGMENTSYNipHlies a mode, where the in- and output
image can be segmemed with usageof two additional segmemation scthemes
(cp. Section5.3). Expectseither MODEEXTUREPATGHVIODESEGMENTSYNTH

findBestBound opBound Two di erent distancetolerancescan be applied to
the patch basedtexture synthesis. findBestBound BOUNEPSILONapplies
the distance tolerance dmax: , with a to be de ned parameter , whereas
findBestBound BOUNDUMBERpplies the distance tolerance dmax: n, With

a to be de ned parameter n (cp. Section 3.3.4). Expects findBestBound

BOUNBEPSILOMr findBestBound BOUNNUMBER

float epsilon de nesthe of the distancetolerancedmax: . Setepsilon =
0, if opBound!= BOUNEPSILONEXxpectsa positive oat value.

long numEvalBlocks de nes the number n of the distance tolerance dmax: n-
SetnumEvalBlocks = 0, if opBound != BOUNDUMBEREXxpectsalonginteger
value > 0.

long seamWidth of the seam. Correspondernts with we. Expects a long
integer value > 0.

long patch Width, height of a quadratic patch. Corresponderts with wy,.
Expectsa long integer value > 0.

long numBlocks Number of all valid blocks for synthesisin the input sample.
It canbe calculated by (inputW idth patch 2 seam+ 1) (inputH eight
patch 2 seam+ 1), where inputW idth and inputH eight are width and
height of the input sample. Expectsa long integer value > 0.

int isometries _180.true If isometries 180true == TRUE isometries of
the 1st category are applied (Section 4.1). The number of the additional
applied isometriesis stored in NUMSOMETRIES80. Expects TRUEr FALSE

int isometries 90_true If isometries 90 true == TRUEisometriesof the
2nd category are applied (Section 4.1). The number of the additional applied
isometriesis stored in NUMSOMETRIESO. Expects TRUBr FALSE

int isometriesFactor Hasto be setto the total humber of applied isome-
tries. It is minimum 1 (becauseisometry Identity is always applied). If
isometries _180.true == TRUHEsometriesFactor += NUMSOMETRIES80.
If isometries 90_true == TRUEsometriesFactor += NUMSOMETRIESO.
Expectsan integer value > 0.

float *error Pointer to anarray of oat with isometr iesF actor numB locks
entries. The memory hasto be allocated beforecalling the function. The array
contains the distancesd of all blocks.

float *sort_error Pointer to an array of oat with isometriesF actor
numB locks ertries. The memory hasto be allocated before calling the func-
tion. The array contains the sorted distancesof all blocks.

float alpha Factor for synthesis of segmemations (Chapter 5.3). Only
valid, if opMode== MODISEGMENTSYN&MKMe set to alpha = 0. Expects a
oat value O.

mylmage*rightColumn Pointer to mylmage cortains the image part, that the
left part of the block seamis comparedwith(Figure B.1).
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Figure B.1. The two marked seam parts are copied separately to the images mylmage
rightColumn (red), mylmagelowerRow (blue), for distance calculation.

mylmage*lowerRow Pointer to mylmage contains the image part, that the
upper part of the block seamis comparedwith (Figure B.1).

mylmage*origlmage Pointer to mylmage corntaining the input sample.

mylmage *inputSegmentation Pointer to mylmage containing the segmera-
tion of the input sample. Only necessaryif opMode== MODISEGMENTSYNTH
elseset to NULL The segmemation has to consist of two colors, black and
white. The color mode hasto be gray scale.

mylmage *outputSegmentation Pointer to mylmage containing the segmena-
tion of the output texture. Only necessaryif opMode== MODISEGMENTSYNTH
elseNULL The segmemation hasto consistof two colors, black and white. The
color mode hasto be gray scale.

mylmage*origBlock Pointer to mylmage Enough memory for one block
(patch +2seam) (patch + 2seam)hasto be allocated. The color mode hasto
be identical to the color mode of the input sample.

mylmage*mutantBlock Pointer to mylmage Enough memory for one block
(patch +2seam) (patch + 2seam)hasto be allocated. The color mode hasto
be identical to the color mode of the input sample.

mylmage*schemeBlockl Pointer to mylmage Enough memory for one block
(patch +2seam) (patch + 2seam)hasto be allocated. The color mode has
to beidentical to the color mode of the input segmemation. Only necessanyif
opMode== MODESEGMENTSYNdlseNULL

mylmage *schemeBlock2 Pointer to mylmage Enough memory for one block
(patch +2seam) (patch + 2seam)hasto be allocated. The color mode has
to beidentical to the color mode of the input segmemation. Only necessaryif
opMode== MODISEGMENTSYNdlkeNULL

mylmage *schemeBlock3 Pointer to mylmage Enough memory for one block
(patch+ 2seam) (patch+ 2seam) hasto be allocated. The color mode has
to beidentical to the color mode of the input segmemation. Only necessaryif
opMode== MODISEGMENTSYNdlkeNULL

regions findRegion Hasto be setto the region, the next synthesized block
should belongto. Valid regionsare:

REGION_BIlock is located totally in the region of the input segmetation
marked white.
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REGION_Block is located totally in the region of the input segmermation

marked black.

BOTH_REGIOB®BCK is partially located in both regions.
Only necessaryif opMode== MODISEGMENTSYNdlseset to 0.
regions *classifiedBlocks Hasto contain a classi cation of all numBlocks
blocks of the input sample, to which region they belong. Only necessaryif
opMode== MODSEGMENTSYNdlskeset to NULL
int normValue Has to corntain a value for a scaling of the distance between
the color schemes. Should be the di erence betweenthe two colorsof the input
segmetation. Only necessaryif opMode== MODISEGMENTSYN#&lde set to
0.
int discardBlackBlockTrue Set this TRUBoO discard all blocks containing
black pixels for texture synthesis (Section 5.2). Expects TRUBr FALSE
avoidRepetitionsTrue  Set this TRUEO try to avoid repetitions of blocks
(Section 4.2). Expects TRUEr FALSE
imageEvaluation *origlmageEval Pointer to imageEvaluation . Is created
by int createlmageEvaluation() . Only necessaryif avoidRepetitionTrue
== TRUEelsesetto NULL

{ struct databestOut

struct databestOut{
long i_opt;
long j_opt;
isometType isometriaOpt;
long badBlockTrue;
I3

long i_opt i-coordinate of the chosenpatch.
long j_opt j-coordinate of the chosenpatch.
isometryOpt Isometry of the chosenblock.

badBlockTrue TRUEIf no block matchesthe distancetolerance,and the best
block hasto be chosen,else FALSEOnly valid if using the bound (opBound
== BOUNEPSILON

The function returns an error code.

Usage: In the following example, the usageof findBestBlock is demonstrated. We
assumea correct initialized varbest . A detailed example how to initialize varbest can
be found in texture _patch() (jptexturepatc h.cpp).
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#include <stdio.h>
#include "jpmyimage.h"
#include "jpmyerror.h"
#include "jpfindbest.h"

{
int errorHandler;
struct databest *varbest;

struct databestOut *outbest;
int  extSwitch;

if(NO_ERROR= (errorHandler =
findBestBlock(varbest, outbest, extSwitch))){
fprintf(stderr, "Error at findBestBlock.")
return errorHandler;

}
long i_opt = outbest->i_opt;
long j_opt = outbest->j_opt;

int  isometryOpt
int  badBlockTrue
}

outbest->isometryOpt;
outbest->badBlockTrue;
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int pyramidFindBestBlock(hPy ramidFindBestBl ock *self, databest *varbest,
databestOut *outbest, int extSwitch)

Description:  The function seartesthe next block, which hasto be sampledby patch
basedtexture synthesis. In contrast to findBestBlock |, this is done with application
of a multiresolution pyramid. Input parametersare given via databest varbest , out-
put parameters are written to databestOut outbest . int extSwitch signalsto the
function, if the next block hasto be placed at the upper border of the output image
(extSwitch = 1), at the left border (extSwitch = 2) or at another place(extSwitch =
0). The structures databest and outbest are explained above, and have to be applied
in the samemanner. The handler hPyramidFindBestBlock hasto be initialized before
the rst usageof pyramidFindBestBlock and destroyed after the last usage. This canbe
donewith the functions int createPyramidFindBestBloc k(h PyramidAnd BestBloc k
**self) and int destroyPyramidFindBestBl ock( hPyramidFindBegBIl ock *self)
The function returns an error code.

Usage: In the following example,the usageof pyramidFindBestBlock is demonstrated.
We assumea correct initialized varbest . First the handler hPyramidFindBestBlock is
initialized. The function is called and nally the handler destroyed.
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#include <stdio.h>
#include "jpmyerror.h"
#include "jpmyimage.h"
#include "jpfindbest.h"

{
int errorHandler;
struct databest *varbest;

struct databestOut *outbest;
int  extSwitch;

hPyramidFindBestBlock *hPyramidFind;

if(NO_ERROR= (errorHandler =
createPyramidFindBestBlo ck(&hPyramidFind)) }{
fprintf(stderr, "Unable to create hPyramidFind");
return errorHandler;

}

if(NO_ERROR= (errorHandler =
pyramidFindBestBlock(hPy ramidFind, varbest, outbest,
fprintf(stderr, "Error at pyramidFindBestBlock.")
return errorHandler;

}
long i_opt = outbest->i_opt;
long j_opt outbest->j_opt;

int  isometryOpt
int  badBlockTrue

outbest->isometryOpt;
outbest->badBlockTrue;

if(NO_ERROR= (errorHandler =
destroyPyramidFindBestBl ock( hPyramidFind)) }{
fprintf(stderr, "Unable to destroy hPyramidFind");
return errorHandler;

extSwitch)){
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Functions to Evaluate Blo ck Rep etitions

The following functions were written with respect to an evaluation, how often a certain block
is sampled (Section 4.2).

int createlmageEvaluation(im ageBval uati on **self, long width, long height)

Description:  Creates imageEvaluation self for an input sample of width long
width and height long height . The function returns an error code.

Usage: In the following, for the image mylmagetestimage an appropriate image eval-
uation structure imageEvaluation testEvaluation s created. The structure consists
of a counter for ead block, which is increasedby ead repetition of this block.

#include <stdio.h>
#include "jpmyerror.h"
#include "jpmyimage.h"
#include "jpfindbest.h"
{

int errorHandler;
mylmage *testimage;

long tmpWidth, tmpHeight;
colorMode tmpMode;

if(NO_ERROR= (errorHandler =
mylmagelnfo(testimage, &tmpWidth, &tmpHeight, &tmpMode))X{
fprintf(stderr, "Error at mylmagelnfo.");
return errorHandler;

}

imageEvaluation *testEvaluation;

if(NO_ERROR= (errorHandler =
createlmageEvaluation(&t estEval uati on, tmpWidth, tmpHeight))){
fprintf(stderr, "Unable to createlmageEvaluation." );
return errorHandler;
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int destroylmageEvaluation(i magé&vduat ion *self)

Description:  Destroys a created structure self of type imageEvaluation . The func-
tion returns an error code.

Usage: In the following, the structure imageEvaluation testEvaluation isdestroyed.

#include <stdio.h>

#include "jpmyerror.h"
#include "jpfindbest.h"

{

int errorHandler;
imageEvaluation *testEvaluation;

if(NO_ERROR= (errorHandler = destroylmageEvaluation(t est Evaluati on))X{
fprintf(stderr, "Unable to destroy ImageEvaluation.");
return errorHandler;

}
}

int imageEvaluationinfo(imag eEvduation *inlmageEvaluation, long *width, long
*height)

Description:  Writes width and height of imageEvaluation inimageEvaluation to
long *width , long *height . The function returns an error code.

Usage: In the following, the width and height of the initialized imageEvaluation
testEvaluation is written to long tmpWidth, long tmpHeight.

#include <stdio.h>
#include "jpmyerror.h"

#include "jpfindbest.h"
{

int errorHandler;
imageEvaluation *testEvaluation;

long tmpWidth, tmpHeight;

if(NO_ERROR= (errorHandler =
imageEvaluationinfo(test  Evaluation, &tmpWidth, &tmpHeight))X{
fprintf(stderr, "Unable to info about testEvaluation.");
return errorHandler;
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int writelmageEvaluation(ima geEwalu atio n *self, long i, long j, long
patchWidth, long patchHeight, long seam)

Description:  Writes the evaluation ertry for the patch (i,j) with patch width long
patchWidth , patchHeight long patchHeight and seamlong seam The patch (i,j) is
marked and all patch+ 2 seam 1 neighbored blocks. This is done by increasingthe
counter for eat block by one. The function returns an error code.

Usage: In the following, the marking of a block with patch at (100,200)is demonstrated.
We assumeimageEvaluation testEvaluation asalready initialized. Patch width and
height are assumedasto be patch, seamas seam

#include <stdio.h>

#include "jpmyerror.h"
#include "jpfindbest.h"

{

int errorHandler;
imageEvaluation *testEvaluation;
long patch, seam;

if(NO_ERROR= (errorHandler =
writelmageEvaluation(tes  tEvaluation , 100, 200,
patch, patch, seam))){
fprintf(stderr, "Unable to write image evaluation.");
return errorHandler;
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int getimageEv aluation(imageEv aluation *self, long i, long j, oat *evaluation)

Description:  Writes out the image evaluation, i.e. how often a block (i,j) is marked
asrepeated, to evaluation . The function returns an error code.

Usage: We demonstratein the following, how to get the image evaluation for the patch
(100,200) of the structure imageEvaluation testEvaluation . The value is saved in
float tmpRepeated

#include <stdio.h>

#include "jpmyerror.h"

#include "jpfindbest.h"

{

int errorHandler;
imageEvaluation *testEvaluation;

float tmpRepeated,;
if(NO_ERROR= (errorHandler
getimageEvaluation(teste  valu ati on, 100, 200, &tmpRepeated))}{
fprintf(stderr, "Unable to get image evaluation.");
return errorHandler;
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int reducelmageEvaluation(im ageBEval uati on *inlmageEvaluation, imageEvaluation
*outimageEvaluation, int factor)

Description:  SubsamplesmageEvaluation *inlmageEvaluation by factor and copies
the result to imageEvaluation *outlmageEvaluation . The function returns an error
code.

Usage: In the following, imageEvaluation testEvaluation is subsampledby the
factor 2 and copiedto imageEvaluation subTestEvaluation

#include <stdio.h>

#include "jpmyerror.h"
#include "jpfindbest.h"

{

int errorHandler;
imageEvaluation *testEvaluation;

imageEvaluation *subTestEvaluation;
long tmpWidth, tmpHeight;

if(NO_ERROR= (errorHandler =
imageEvaluationinfo(test  Evaluation, &tmpWidth, &tmpHeight))X{
fprintf(stderr, "Error at imageEvaluationinfo()");
return errorHandler;

}

if(NO_ERROR= (errorHandler =
createlmageEvaluation(&s ubTestEvalu atio n, tmpWidth/2,
tmpHeight/2)){
fprintf(stderr, "Unable to createlmageEvaluation." );
return errorHandler;

if(NO_ERROR= (errorHandler =
reducelmageEvaluation(te stEvalu atio n, subTestEvaluation, 2))}{
fprintf(stderr, "Unable to reduce image evaluation.");
return errorHandler;
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int getBlockimageEvaluation( imageEwaluation *inlmageEvaluation,
imageEvaluation *outimageEvaluation, long startl, long startJ, long width,
long height)

Description: Copiesa region of imageEvaluation *inlmageEvaluation and copiesit
to imageEvaluation *outlmageEvaluation . The regionis characterized by its upper,
left corner (startl, startJ) and its width long width and height long height . The
function returns an error code.

Usage: In the following example, a region, beginning at (0,0) of size50 50 is copied
from imageEvaluation testEvaluation to imageEvaluation blockTestEvaluation

#include <stdio.h>

#include "jpmyerror.h"

#include "jpfindbest.h"

{

int errorHandler;
imageEvaluation *testEvaluation;

imageEvaluation *blockTestEvaluation;

if(NO_ERROR= (errorHandler =
createlmageEvaluation(&b lock TestEvaluat ion, 50, 50))){
fprintf(stderr, "Unable to createlmageEvaluation.” );
return errorHandler;

}

if(NO_ERROR= (errorHandler
getBlocklmageEvaluation( test Evduat ion, blockTestEvaluation,
0, 0, 50, 50)1
fprintf(stderr, "Unable to get block from testimageEvaluation.");
return errorHandler;

Other

int blockContainsColor(mylma ge *block, unsigned char colorValueR, unsigned
char colorValueG, unsigned colorValueB, int *trueFalse)

Description: Writes TRUHo int  trueFalse , if the mylmageblock contains the color
speci ed with its RGB componerts (colorValueR , colorValueG , colorValueB ), else
FALSE If the image is gray scale,only the R component is evaluated. The function
returns an error value.

Usage: In the following exampleis demonstrated, how to prove, if the image mylmage
testimage contains a black (0,0,0) pixel. The result is written to int containsBlack .
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#include <stdio.h>
#include "jpmyerror.h"
#include "jpmyimage.h"
#include "jpfindblocks.h"
{

int errorHandler;
mylmage *testimage;

int containsBlack;

if(NO_ERROR= (errorHandler
blockConainsColor(testim
fprintf(stderr, "Error
return errorHandler;

age, 0, 0, 0, &containsBlack)))}{
at blockContainsColor()");
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B.1.7 jpclassifyBlo cks.h, jp classifyBlo cks.cpp

int classifyBlocks(mylmage *inlmage, regions *classifiedBlocks, long
maxClassifiedBlocks, long patchWidth, long patchHeight, long seam, unsigned
char colorl, unsigned char color2)

Description:  Analyzes all valid blocks of mylmage*inimage , which has to be gray
level (colorMode BLACKWHITENd consist of 2 gray values unsigned char colorl
and unsigned char color2 , what region they belongto. The following regions are
de ned:

{ REGION_Block is located totally in the region marked with colorl.
{ REGION_Block is located totally in the region marked with color2.
{ BOTH_REGIOB®BCK is partially located in both regions.

The result is written to regions *classifiedBlocks , an array of regions with
maxClassifiedBlocks ertries. The blocks consist of a patch of width patchWidth,
height patchHeight and surrounding seamof sizeseam Only blocks, which are com-
pletely in inlmage are evaluated, and the result is written in raster scan order to
classifiedBlocks . l.e. the rst ewaluated block is (seam sean), where (x,y) de-
nes the upper left corner of the patch of a block placed in inlmage. The function
returns an error code.

Usage: In the following example, the image mylmagetestimage , consisting of the two
gray valuesO and 255 (black and white) is evaluated. The result is written to regions
*testRegions . Patch width and height are 25, seam5.
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#include <stdio.h>

#include <stdlib.h>
#include "jpmyerror.h"
#include "jpmyimage.h"
#include "jpclassifyBlocks.h"

{

int

errorHandler;

mylmage *testimage;

long patchWidth
long patchHeight
long seam

25;
25;

long tmpWidth, tmpHeight;
colorMode tmpMode;
if(NO_ERROR= (errorHandler =

mylmagelnfo(testimage, &tmpWidth, &tmpHeight, &tmpMode))}{
fprintf(stderr, "Error at mylmagelinfo.");
return errorHandler;

}
long blocksHorizontal = tmpWidth - patchWidth - 2*seam + 1;
long blocksVertical = tmpHeight - patchHeight - 2*seam + 1,

long maxBlocks = blocksHorizontal*blocks  Vertica |;

/I either maxBlocks == 0 or < O

I

in both cases testimage too small for patch and seam

if(lmaxBlocks < 1)

fprintf(stderr, "maxBlocks < 1");
return BAD_RANGE;

}

regions *testRegions;

if(NULL == (testRegions = (regions)calloc(maxBlocks , sizeof(regions)))){
fprintf(stderr, "Unable to calloc for testRegions.");

}

return BAD_MEM;

if(NO_ERROR= (errorHandler =

classifyBlocks(testimage , testRegions, maxBlocks, patchWidth,
patchHeight, seam, 0, 255))){
fprintf(stderr, "Unable to classify testimage.");

return errorHandler;
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B.1.8 jpmylter.h jpmy lter.cpp

int filterAndSubsamplelmage( imgdes *inlmage, imgdes *outlmage, filtertype
FILTER)

Description:  Applies a lter and subsampleghe imageimgdes *inimage by the factor
2. Finally the result is copiedto imgdes *outimage . The following filtertype = canbe
applied to the function:

{ NO_FILTERo lter is applied. The imageis only subsampled.
{ MEAN_FILTER mean Iter with the maskof 3 3is applied to the image.

The function returns an error code.

Usage: In the following, the Itering and subsampling of imgdes testimage is pre-
serted. testimage is ltered with a mean lter. The result is subsampledby the factor
2 and copied to imgdes subsampledTestimage.

#include <stdio.h>
#include "vicdefs.h"
#include "myError.h"
#include "jpmyfilter.h"
{

int errorHandler;
imgdes *testimage;

/[ get parameters of testimage
int  tmpBpp, tmpWidth, tmpHeight;
CalcularParametros(testim age, &tmpWidth, &tmpHeight, &tmpBpps);

imgdes subsampledTestimage;
if(NO_ERROR= (errorHandler =
allocimage(&subsampledTe stim age, tmpWidth/2, tmpHeight/2,
tmpBpps))K
fprintf(stderr, "Error alloc for subsampledTestimage.");
return errorHandler;

}

if(NO_ERROR= (errorHandler =
fiterAndSubsamplelmage( &testimage, &subsampledTestimage,
MEAN_FILTER))X{
fprintf(stderr, "Unable to filter  and subsample
testimage to subsampledTestimage.")
return errorHandler;
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B.1.9 jpmyerror.h, jpm yerror.cpp

The following functions provide an easy possibility to print out error and info messages.It
wasimplemented with respectto a later easierportabilit y of the functions. All in this chapter
intro duced functions useinternal thesethesetwo functions to print out messages.

void myErrorMessage(char buffe[MAXERRORMSG])

Description:  Prints out the error messagecorntained in char bufferfMAXERRORMSG]
MAXERRORMSE2 ned in jpmyerror.h. The function returns void.

void mylnfoMessage(char bufferfMAXERRORMSG])

Description:  Prints out the info messagecortained in char bufferfMAXERRORMSG]
MAXERRORNsSE® ned in jpmyerror.h. The function returns void.

B.1.10 jpmyrand.h, jpm yrand.cpp
long myRand(long n)

Description:  The function returns a random variable of long in the range of [O;n].



